Method for the Treatment of Multiple Sclerosis

The invention relates to the discovery that humanized antibodies to the interleukin-2 receptor (IL-2R) such as (daclizumab) are effective in treating multiple sclerosis (MS). In particular, it has been discovered that patients who have failed to respond to therapy with interferon-beta show dramatic improvement when treated with daclizumab, with patients showing both a reduction in the total number of lesions and cessation of appearance of new lesions during the treatment period. Daclizumab is effective both in combination with interferon-beta and alone.

Multipotent Postnatal Stem Cells From Human Periodontal Ligament and Uses Thereof

It is estimated that over 40 percent of the adult population in the United States has periodontal disease in one form or another. Periodontal Disease is a chronic infection of the periodontal ligament (PDL) and the adjacent bone and cementum. The effects of Periodontal Disease range from simple gum inflammation to, in extreme cases, tooth loss.

Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).

Identification and Use of 12/15-Lipoxygenase (LOX) Inhibitors for Post-Strike Treatment

This technology includes the identification and use of 12/15-lipoxygenase (LOX) inhibitors, including ML351 and related analogs, for post-stroke treatment. The 12/15-LOX directly oxidizes lipid membranes leading to their direct attack. After a stroke, the activity of 12/15-LOX is upregulated and is thought to contribute to increased neuronal loss and blood-brain barrier leakage. A high-throughput screen was undertaken to find inhibitors, which were then subjected to medical chemistry optimization.

Transgenic Mouse Models for Studying HLA-B57:01 and HLA-B15:02 Linked Immune Responses and Hypersensitivity Reactions

Transgenic mouse models expressing human HLA-B57:01 and HLA-B15:02 molecules have emerged as invaluable tools for unraveling the intricacies of immune responses and hypersensitivity reactions. The major histocompatibility complex (MHC) encoded proteins play a pivotal role in the immune system by presenting peptide fragments to T lymphocytes, and HLA-B57:01 has been associated with severe hypersensitivity reactions triggered by abacavir, a widely used anti-retroviral drug.

Compounds and Methods for Treating Brain Injury

This technology includes MRS4322, which is an A3 agonist that is currently being evaluated for treatment of traumatic brain injury. Although its affinity in the receptor is in the micromolar range, it enters the brain in sufficient concentration to activate a protective CNS receptor, A3 adenosine receptor. Potential applications of such A3 agonists could also include neurodegenerative conditions.

Application of AAV44.9 Vector in Gene Therapy for the Inner Ear

This technology includes a novel AAV isolate (AAV44.9) to be used as gene therapy for the inner ear for the treatment of deafness. The ability of AAV vectors to transduce dividing and non-dividing cells, establish long-term transgene expression, and the lack of pathogenicity has made them attractive for use in gene therapy applications. Vectors based on new AAV isolates may have different host range and different immunological properties, thus allowing for more efficient transduction in certain cell types.