Real-time RT-PCR assay for Detection of Live Attenuated Influenza Vaccine for A and B Viruses

Upon intranasal vaccination, live attenuated influenza vaccine (LAIV) viruses may replicate within the nose for several days. Current clinical diagnostic tests cannot distinguish between LAIV viruses and multiple influenza viruses in recently inoculated patients that present with respiratory symptoms. This poses a problem for the diagnosis and treatment of patients with respiratory symptoms, as these symptoms may not be caused by influenza. CDC researchers have developed a real-time RT-PCR assay to detect the presence of LAIV viruses.

Chicken Polyclonal Antiserum to the Nitrone Spin Trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO)

Biological radicals resulted from oxidative stress has been implicated in human diseases, such as cancer and aging. There is, however, a paucity of reliable methods for in vivo or ex vivo detection of either radical formation, the end-products of radical formation or susceptibility for radical formation. The chicken polyclonal anti-DMPO can be used to detect the stable nitrone end-product of protein and DNA radicals in ELISA assays, blot analyses and confocal microscopy.

Rabbit Polyclonal Antiserum to the Nitrone Spin Trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO)

Biological radicals resulted from oxidative stress has been implicated in human diseases, such as cancer and aging. There is, however, a paucity of reliable methods for in vivo or ex vivo detection of either radical formation, the end-products of radical formation or susceptibility for radical formation. The Rabbit polyclonal anti-DMPO can be used to detect the stable nitrone end-product of protein and DNA radicals in ELISA assays, blot analyses and confocal microscopy.

Estrogen-related Receptor (ERR) and Proliferator-activated Receptor Gamma Coactivator (PGC)/ERR Reporter Stable Cell Lines

The estrogen-related receptor alpha (ERRalpha) and proliferator-activated-receptor-gamma coactivator-1alpha (PGC-1alpha) play major roles in transcriptional control of cellular energy metabolism. In particular ERRs are required for the response to various environmental challenges that require high energy levels by the organism. As central regulators of energy homeostasis, ERRs may also implicate in the etiology of metabolic disorders, such as type 2 diabetes and metabolic syndrome.

Leucine Rich Repeats and Calponin Homology Containing Protein 4 (Lrch4)-deficient Mouse

Leucine rich repeats and calponin homology containing protein 4 (Lrch4) is a gene that encodes a protein predicted to have a C-terminal transmembrane domain, a calponin homology domain, and 5-8 leucine rich repeats (LRRs). We silenced Lrch4 in RAW 264.7 macrophages as well as CD14-MD2-TLR4-HEK293 cells and found that Lrch4 knockdown attenuates responsiveness of cells to LPS and other pathogen-associated molecules. These findings suggest that Lrch4 is a regulator of the innate immune response.

Mouse Strain CAR-KO C3H/HeNCrl, Deletion of Nuclear Xenobiotic Receptor CAR

CAR (nuclear constitutive active receptor) is a member of the nuclear receptor superfamily, and is a key regulator of xenobiotic and endobiotic metabolism. It is primarily responsible for sensing foreign toxic substances and in response up regulating the expression of proteins involved in the detoxification and clearance of these substances from the body. CAR is constitutively active in the absence of a ligand but is regulated by both agonists and inverse agonists.

Novel Genetic Tristetraprolin (TTP) Knock-in Mouse

Tristetraprolin (TTP) is the prototype member of a small family of RNA binding proteins that bind to specific types of AU-rich elements in the 3'UTRs of target mRNAs and promote their rapid turnover. One of the targets destabilized by TTP is Tumor necrosis factor alpha (TNF). TNF has long been a target of anti-inflammatory drug development, in which recombinant protein molecules based on TNF antibodies or TNF receptors have been used to bind directly to TNF and inactivate it.

Rabbit Antisera to Various Matrix, Matricellular, and Other Secreted Proteins

The extracellular matrix (ECM) is composed of a group of proteins that regulate many cellular functions, such as cell shape, adhesion, migration, proliferation, and differentiation. Deregulation of ECM protein production or function contributes to many pathological conditions, including asthma, chronic obstructive pulmonary disease, arthrosclerosis, and cancer. Scientists at the NIH have developed antisera against various ECM components such as proteoglycan, sialoprotein, collagen, etc.. These antisera can be used as research tools to study the biology of extracellular matrix molecules.

Immunological Detection of Free Radicals In Animals and In Vitro

Electron Spin Resonance (ESR) is an universal, specific tool for the detection of free radicals in biological systems. Its application to the investigation of free radicals from whole animals, organs, and cells has been made possible by the spin-trapping technique. In a Spin-trapping experiment, a spin trap such as DMPO (5,5-dimetryl-1-pyrroline N-oxide) reacts specifically with one or more types of free radical to form radical-derived nitrone adducts that are much more stable than the original free radicals.