Rabbit Antibody to Mouse Sphingosine kinase 2 (SphK2)

Two isoforms of sphingosine kinase, sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2), convert sphingosine to sphingosine 1-phosphate (S1P) in mammalian cells. While the importance of SphK1 has been known for some time, information about SphK2 is still being revealed. Therefore, researchers at NIH have developed an antibody against mouse SphK2, which can be used to further understand the role of this enzyme.

Monoclonal Antibodies for Detection of Stachybotrys chartarum (a Fungus)

CDC NIOSH researchers have developed a simple and rapid detection technique for Stachybotrys chartarum (a type of mold that commonly grows on wet building materials) by producing monoclonal antibodies which reacts with proteins in Stachybotrys chartarum. These antibodies can be used in immunologic detection assays to detect and possibly quantify Stachybotrys chartarum in environmental samples, and to our knowledge, they do not cross react with other fungi.

Monoclonal Antibodies That Recognize the Human Type I Interferon Receptor and Block Interferon Signaling

Type I interferons play a critical role in both innate and adaptive immunity through the stimulation of the IFNAR1 which initiates interferon signaling in response to viral and bacterial infections. However, abnormal interferon signaling is associated with human diseases, such as lupus. The present invention discloses six hybridomas that produce mouse monoclonal antibodies specific for the extracellular domain of human IFNAR1. Two of the monoclonal antibodies are able to bind IFNAR1 and reduce interferon signaling.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Reduced Virulence Crimean-Congo Hemorrhagic Fever Virus for Vaccine Development

This invention relates to a genetically modified hemorrhagic fever virus that can be used as an effective live vaccine agent. Hemorrhagic fever evades the human immune response using the viral ovarian tumor domain (vOTU) protease, which inhibits critical host-immunity functions. The present genetically modified virus has a vOTU protease with decreased ability to remove ubiquitin (Ub) and ISG15 tags from proteins in cells it infects. Thus, the virulence is reduced, creating an immunogenic and non-pathogenic virus for use as a live vaccine against Crimean-Congo hemorrhagic fever (CCHF) virus.

Signatures of Genetic Control in Digestive and Liver Disorders

Our technology describes unique genetic signatures in patients with digestive diseases and liver disorders. Using comprehensive analysis of 735 microRNAs and 19,000 mRNAs, we have identified a unique set of microRNAs and/or mRNAs which predict disease phenotypes in patients with digestive and liver disorders. The identification of such point-of- care genetic signatures is significant for both personalized biomarkers and novel targeted biotherapeutics. These microRNAs and mRNAs function either together or separately thus modulating protein expressions in one or more signaling pathways.

Small Interfering RNA Inhibition of Cannabanoid-1 Receptor (CB1R) for Treating Type 2 Diabetes

The invention pertains to the use of glucan encapsulated non-immunostimulatory small interfering RNAs (siRNAs) to treat type-2 diabetes. Endocannabinoids (EC) are lipid signaling molecules that act on the same cannabinoid receptors that recognize and mediate the effects of endo- and phytocannabanoids. EC receptor CB1R activation is implicated in the development of obesity and its metabolic consequences, including insulin resistance and type 2 diabetes.

Development of Immune System Tolerance for the Treatment of Autoimmune Disease

The present invention provides a therapeutic method for the treatment of autoimmune or autoinflammatory diseases by first breaking down the dysregulated immune system and then reprogramming the immune system to restore tolerance to the patient's self-antigens by induction of antigen specific regulatory T cells. The inventors have shown that only with the combination of apoptosis, phagocytes, and antigen can antigen-specific regulatory T cells (Treg) cells be optimally generated to develop long-term immune tolerance.

Recombinant NIE Antigen from Strongyloides stercoralis

Strongyloides stercoralis is an intestinal nematode endemic that affects an estimated 30 to 100 million people worldwide. Many of these individuals may be asymptomatic for decades. The present invention discloses a NIE recombinant antigen that can be used in improved assays and diagnostics for S. stercoralis infection. The NIE antigen is the only one that is non-cross-reactive with sera from humans with other related filaria infections. The NIE antigen can be utilized as a skin test antigen for immediate hypersensitivity as well as for use in ELISA or other assays.

Diagnostics, Vaccines, and Delivery-Vehicles Related to Novel Phlebovirus

This CDC invention relates to primers and probes that specifically hybridize with Heartland virus (HRTLDV), a unique member of the genus Phlebovirus. It further relates to polyclonal antibodies specific for HRTLDV proteins. Serological detection assays using HRTLDV nucleic acid molecules, proteins, probes, primers, and antibodies are provided. Importantly, the HRTLDV genome can be engineered using reverse genetics to be attenuated, allowing development of a vaccine for other viruses within the Phlebovirus genus or Bunyaviridae family.