A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

Sensor and Device for Real-Time Discovery of Metabolites in Blood for Disease Detection, Monitoring and Control

This technology includes device and sensor selection for the detection of blood metabolites which can be used to diagnose and monitor diseases in real-time. Currently the monitoring of metabolite levels is performed with specialized mass spectrometry instrumentation, therefore patient quality-of-life and financial advantages exist to develop devices capable of detecting metabolites in real-time.

Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

Development of an Efficient and Affordable Protein Purification System to Study Protein Functions and Structures

This technology includes a semi-automatic and affordable protein purification system that produces purified proteins with yields and purities comparable to an automatic protein purification system for less than 10% of its cost, which can be used for studying protein structure and function, as well as antibody purifications and drug screenings. Additionally, the new system is flexible and customizable for use with both custom-made and commercial pre-made resin columns with either gravity flow or low-pressure configurations.

Trans-auricular Left Atrial Appendage Ligation to Prevent Thrombosis

This technology includes an interventional device to occlude the left atrial appendage to prevent thrombus formation. Atrial fibrillation is the most common cardiac arrhythmia and is associated with formation of thrombus in the left atrial appendage. Standard preventative treatment involves anticoagulation, which is not tolerated by all patients. Existing devices necessitate improvement because they need trans-septal puncture and anticoagulation to prevent thrombus or are prone to life-threatening complications.

Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging

This technology includes a technique to improves detection of myocardial scar compared with conventional bright-blood late gadolinium enhancement (LGE) techniques. Dark-blood late gadolinium enhancement (DB-LGE) improves tissue delineation with signal suppression of the blood pool based on T2-preparation pulse that is relatively independent from the blood flow velocities and improves scar detection in patients with known or suspected coronary artery disease.

Tissue Clamp for Repeated Opening and Closure of Incisions/Wounds

Medical clamps currently available are not efficient nor are they sufficiently precise in closure and alignment of the edges of an incision or wound. Many available designs are difficult to use and handle, especially in situations where repeated opening and closure of an incision or wound is required. The functional short-comings of existing clamp designs may result in surgical complications, such as excess loss of fluids and pressure and hemostasis during some procedures.

Devices for Improved Tissue Cryopreservation and Recovery

Problem: Cryopreservation is a process where living biological materials like cells, tissues, and cell therapies (which are susceptible to damage caused by unregulated chemical kinetics) are preserved by cooling to very low temperatures in the presence of specific cryopreservation media that protects the biological material from damage. In order to be used, the biological material ideally should be thawed in a controlled manner that minimizes damage and desirably brings the material back to a viable state.

Mouse Embryo Culture Chamber and Imaging System and Methods of Use

The culture of mouse embryos ex utero and continuous monitoring and imaging of embryos as they develop have applications in drug testing, genetic studies, and basic research on embryonic development. However, the embryo culture systems currently available for post-implantation embryos include rolling bottle culture systems, which do not permit imaging of the developing embryos and do not support the long-term survival and development of embryos ex utero.