Time Efficient Multi-Pulsed Field Gradient (mPFG) MRI Without Concomitant Gradient Field Artifacts

Measuring and mapping nervous tissue microstructure noninvasively is a long sought-after goal in neuroscience. Clinically, several neuropathologies such as cancer and stroke, are associated with changes in tissue microstructure. Diffusion tensor imaging (DTI), which models diffusion anisotropy, is an ideal imaging modality to elucidate these changes. However, DTI provides a mean diffusion tensor averaged over the entire MRI voxel. This has limitations when applied to heterogeneous neural tissue.

Multidimensional MRI Signature for Specific Detection of Traumatic Brain Injury In Vivo

Traumatic brain injury (TBI) represents a major medical, social and economic concern worldwide due to significant mortality – especially among younger populations – and long-term disabilities. Various pathological brain lesions (e.g., intracerebral bleedings, necrotic-ischemic lesions, tissue avulsion) are produced by impacting mechanical forces. Among these, diffuse axonal injury (DAI) is one of the most significant brain lesions typically associated with trauma. However, DAI is not necessarily linked with TBI exposure. Therefore, the term “traumatic axonal injury (TAI)” is commonly used.

Synthetic Lethality-mediated Precision Oncology via the Tumor Transcriptome

The use of tumor transcriptomics for precision oncology has made significant advances, mainly by identifying cancer driver genes or actionable mutations for treatment with targeted therapies.  However, this strategy misses out on broader genetic interactions that could reveal additional biologically testable biomarkers for therapy response prediction and inform the selection of more effective drugs for targeted treatment.

Methods of Treating Diffuse Large B Cell Lymphoma Based on Particular Genetic Subtype (LymphGen) - A Genetic Classifier to Aid in the Molecular Diagnosis and Treatment of Diffuse Large B-cell Lymphoma

The development of precision medicine approaches for DLBCL (Diffuse Large B Cell Lymphoma) is complicated by its genetic, phenotypic and clinical heterogeneity. Current classification methods do not fully explain the observed differences in clinical outcomes to current chemotherapy and targeted therapy. Therefore, better analytical methods to classify and predict DLBCL patients’ treatment response are needed.

RNASEH-Assisted Detection Assay for RNA

Several viral epidemics – such as the epidemics caused by H1N1 influenza virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus and SARS-CoV-2 – have profoundly impacted global human health. Early identification of infected and/or infectious persons and isolating them from the population are some of the most effective and evident measures to prevent human-to-human spreading.

Molecular Classification of Primary Mediastinal Large B Cell Lymphoma Using Formalin-Fixed, Paraffin-Embedded Tissue Specimens

Primary mediastinal B-cell lymphoma (PMBCL) is an aggressive type of non-Hodgkin lymphoma that mostly occurs in people between the ages of 30-40. It accounts for 5-7% of all aggressive lymphomas. The diagnosis of PMBCL is challenging as the histological features of PMBCL overlap with diffuse large B-cell lymphoma (DLBCL), another most common type of non-Hodgkin lymphoma. Available evidence suggests that PMBCL responds much more favorably to the DA-EPOCH-R chemotherapy regimen than to the standard R-CHOP regimen used to treat DLBCL.

Diagnostic Assay for Determining Patient Response to Apoptosis-related Cancer Therapy

Many known chemotherapeutic drugs kill abnormal cells through a process called apoptosis. Bcl-2 proteins are negative regulators of apoptosis that control cell survival and death. Increased expression of anti-apoptotic Bcl-2 proteins commonly occurs in up to 30% of all cancers, providing cancer cells a pro-survival advantage to evade cell death, grow, and proliferate. Drugs targeting these specific anti-apoptotic proteins are potential anti-cancer therapeutics.

Conformational Restriction of Cyanine Fluorophores in Far-Red and Near-IR Range

Small molecule fluorescent probes are important tools in diagnostic medicine. Existing far-red and near-IR cyanine fluorophores (e.g. Cy5, Alexa 647, Cy7, ICG) are active in the far-red and near-range, but these agents suffer from modest quantum yields (brightness) which limit wide utility. It has been reported that the limited brightness of these fluorophores is due to an excited-state C-C rotation pathway.