Focused Electrostatic Collection of Aerosol Particles for Chemical Analysis by Spectroscopic Techniques

This CDC-developed technology is an aerosol preconcentration unit (APU) designed for use with spectroscopic detection techniques, including emission, Raman, or infrared spectroscopies. Most existing pulsed microplasma techniques, such as laser-induced breakdown, for aerosols rely mainly on filter-based collection and suffer from poor accuracy, precision, and detection limits and require long sample collection times.

Occupational Safety: Portable Exposure Assessment System for Prevention of Musculoskeletal Injury

CDC researchers have developed the Portable Exposure Assessment System (PEAS), a field-based, remotely deployed tool to monitor and provide early warning of working conditions that have a high likelihood of musculoskeletal injury. PEAS is a noninvasive, real-time, instrument-based system. Sensor technology simultaneously measures and collects data regarding the body loads and awkward postures imposed by package handling as well as driving-related, low-frequency vibrations.

On-site in vitro Diagnostic: Real-time Loop-Mediated Isothermal Amplification Detection of HIV-2 Groups A and B

This CDC-developed technology entails a nucleic acid-based HIV-2 in vitro diagnostic assay that is well-suited for use in mobile testing units/vehicles or resource-limited settings, for example, many areas of West Africa. Because HIV-2 requires unique treatment regimens, accurate, early diagnosis is crucial for effective care and directing treatment. Recently, new HIV testing recommendations have been proposed for laboratory settings, which include the use of a HIV-1/HIV-2 discriminatory assay.

Novel Enzyme-Based Immunoassay for Simultaneous Detection of Hepatitis C Virus Antigen and Antibody in Human Serum or Plasma

CDC scientists have developed a novel enzyme immunoassay for the simultaneous detection of hepatitis C virus (HCV) core antigen and circulating HCV antibodies. Serological testing procedures for HCV circulating antibodies are well established. There is, however, a window of time between HCV infection and seroconversion that generates an opportunity for false negative results. This period varies from two months in immunocompetent subjects to six to twelve months in immunodeficient patients.

Polypeptides and Methods for Enhancing and Balancing Monovalent or Multivalent Flavivirus Vaccines

CDC researchers have developed a potent immunogenic enhancer polypeptide useful for improving flavivirus vaccines. Flaviviruses such as dengue virus (1, 2, 3 and 4), Japanese encephalitis virus, Murray Valley encephalitis virus, St. Louis encephalitis virus, yellow fever virus and tick-borne encephalitis virus are a great burden on public health. This technology describes an identified CD4+ T cell epitope occurring within the E-glycoprotein of West Nile virus and methods of using this polypeptide to increase vaccine immunogenicity in monovalent vaccines.

A Novel Demodulation System in X-ray Imaging

In various x-ray imaging methods, including scattering correction and phase contrast imaging, intensity modulation in space is introduced into the projection images by the use of masks, gratings, or apertures. The present invention relates to a process to demodulate the modulation. The current demodulation processes are either to remove the modulation pattern through digital processing or to move the modulation pattern on the detector in a series of images that requires mechanical movements of a component and tends to lose some information of the imaged object.

A Novel X-ray Grating to Enhance Phase Contrast Imaging

The present invention relates to improving x-ray phase contrast imaging. The invention discloses a novel grating interferometer for phase contrast imaging with hard x-rays that overcomes limitations in the level of sensitivity by utilizing the advantages of far-field interferometers. The novel design and fabrication process can easily acquire absolute and differential phase images of lightly absorbing samples.

A Current Amplifier for Local Coil Pre-amplification of NMR/MRI Signals

The magnetic resonance imaging (MRI) systems are used for a variety of imaging application. The present invention discloses an improving MRI device and method by amplifying signals received by resonant NMR coils of MRI systems. It utilizes positive feedback from low-noise Field-Effect Transistor to amplify the signal current that can be coupled out to receiving loops positioned externally without loss in sensitivity. Therefore, the NMR coil can be flexibly positioned near internal tissues and used to develop high-resolution images in highly invasive situations.

Resolution Enhancement for Light Sheet Microscopy Systems

The invention pertains to a technique for enhancing the resolution of images in light sheet microscopy by adding additional enhanced depth-of-focus optical arrangements and high numerical aperture objective lenses. The technique employs an arrangement of three objective lenses and a processor for combining captured images. The image composition utilizes the greater resolving power of the third high numerical aperture objective lens by imaging the light sheet and enhanced depth-of-focus arrangement resulting in improved overall resolution of the light sheet system.