Antagonist of A3 Adenosine Receptor Fluorescent Probes for the Study of Diseases that Involve A3 Signaling

This molecular probe may serve as a companion tool to identify and stratify patient populations based on the prevalence of the target A3 adenosine receptors.

Small molecule drugs, A3AR-selective agonists, are currently in advanced clinical trials for the treatment of hepatocellular carcinoma, autoimmune inflammatory diseases, such as rheumatoid arthritis, psoriasis, and dry eye disease, and other conditions.

Endothelial Cell Line to Study Prevention of Atherosclerosis

Atherosclerosis underlies most cases of cardiovascular disease (CVD), which is now the major cause of morbidity and mortality in developed countries. An inflammatory reaction is an essential component in the appearance and development of an atherosclerotic lesion. The inflammatory process is associated with the expression of adhesion molecules such as vascular cell adhesion molecule (VCAM) at the surface of endothelial cells. Antiatherogenic lipoprotein, high density lipoprotein (HDL), is known to down regulate the expression of VCAM.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

A Method to Expand a Population of Regulatory T Cells Optimal for the Treatment of Autoimmune Diseases

The transfusion of regulatory T cells (Tregs) has been used in the clinic to successfully prevent graft vs. host disease and is currently being evaluated in the treatment of other autoimmune diseases, such as organ graft rejection, type 1 diabetes and multiple sclerosis. Prior to transfusion, adoptive regulatory T cell transfer requires the expansion of regulatory T cells in culture; this results in a mixed population of regulatory T cells that limits the effectiveness of the transferred cells.

Novel Small Molecule Agonists of the Relaxin Receptor as Potential Therapy for Heart Failure and Fibrosis

The present invention is directed to novel small molecule agonists of the mammalian relaxin family receptor 1 (RXFP1), including human RXFP1. Activation of RXFP1 induces: 1) vasodilation due to up-regulation of the endothelin system; 2) extracellular matrix remodeling; 3) moderation of inflammation by reducing levels of inflammatory cytokines; and 4) angiogenesis. Small molecule agonists of RXFP1 may be useful in treating acute heart failure (AHF), scleroderma, fibrosis, other conditions associated with the biology of relaxin, and in improving reproductive health and wound healing.

Small Molecule MRS5474 with Anticonvulsant Activity for Treatment of Epilepsy

Adenosine modulates many physiological processes by activating specific adenosine receptors. These adenosine receptors play a critical role in the regulation of cellular signaling and are broadly distributed throughout the body. Thus, the ability to modulate adenosine receptor-mediated signaling is an attractive therapeutic strategy for a broad range of diseases. This technology relates to a group of compounds that display high affinity and specificity for the A1 adenosine receptor subtype.

Glucocorticoid-induced TNFR Family-Related Receptor Ligand (GITRL) Antibodies for Diagnosis and Treatment of Immune System Disorders

This technology provides novel antibodies and methods for diagnostics and treatment of disorders arising from dysregulation of the immune system using antibodies directed against glucocorticoid-induced tumor necrosis factor receptor family-related receptor ligand (GITRL). Also available are hybridomas producing anti-mouse GITRL monoclonal antibodies (clone 5F1).