Modulating Autophagy as a Treatment for Lysosomal Storage Diseases

Researchers at NIAMS have developed a technology for treatment of lysosomal storage diseases by inhibition of autophagy. Pompe disease is an example of a genetic lysosomal storage disease caused by a reduction or absence of acid alpha-glucosidase (GAA). Patients with Pompe disease have a lysosomal buildup of glycogen in cardiac and skeletal muscle cells and severe cardiomyopathy and skeletal muscle myopathy. Treatment of Pompe disease by GAA enzyme replacement therapy is quite ineffective for the skeletal muscle myopathy.

Identification of a Novel Parvovirus for Vaccine Development and Use as a Diagnostic Tool

This technology includes a procedure for novel virus identification in a variety of human specimens by solexa high-throughput sequencing, which allows for the screening a large number of clinical specimens for novel virus discovery in a highly efficient and relatively economical method. By using this technique, we have successfully identified a novel parvovirus from samples of seronegative hepatitis patients.

Engineered Human Induced Pluripotent Stell Cell (iPSC) Lines for Multiple Therapeutic and Diagnostic Uses

This technology includes ten engineered human induced pluripotent stem cell (iPSC) lines with reported genes inserted into safe harbor sites for use in therapy and diagnostic screening assay development as well as basic stem cell biology research. These cell lines have the potential to differentiate into all cells in the body, and theoretically can proliferate/self-renew indefinitely.

Generation of AAVS1 and C13 “Safe Harbor” Transcription Activator-life Effector Nucleases (TALENs) for Drug Screening or Gene Therapy Development

This technology includes AAVS1 and C13 “safe harbor” transcription activator-life effector nucleases (TALENs) for drug screening or gene therapy applications. TALENs are engineered sequence-specific DNA endonucleases that can significantly enhance genome-editing efficiency by >100-1000 folds. “Safe harbor” such as AAVS1 safe harbor and C13 safe harbor is genome locus that allows robust and persistent transgene expression with no or minimal interference of endogenous gene expression and cell properties.

Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Immunotherapy is a promising method of treating cancer that leverages the immune system to promote tumor rejection. However, certain somatic mutations in cancer cells confer resistance to T cell-mediated cytolysis. To improve the effectiveness of immunotherapies for cancer, there exists a need to prospectively identify patients who are most likely to respond to such therapies.

Novel Methods for Reducing Inflammation and Treating Diseases such as Parkinson's and Alzheimer's Disease

Microglia activation leads to inflammation mediated dopaminergic degeneration in the brain of patients with Parkinson and Alzheimer's Disease. Thus Identification of drugs that reduce microglia activation could prevent or reverse neuronal degeneration in these diseases and other degenerative CNS disorders.

Monoclonal Antibodies to HIV-1 Vpr

Available for licensing are monoclonal antibodies against HIV-1 viral protein R (Vpr) and the respective hybridoma cell lines expressing the same. The antibodies provide a means for detecting HIV-1 Vpr. Currently, the mechanism of HIV pathogenesis believed to involve viral replication inside immune cells and other cells. At present, there are no clinical assays for detecting HIV-1 Vpr. Vpr circulates at detectable levels in the blood and is likely derived from degraded virions or released from infected cells. Vpr facilitates viral replication and disrupt normal cell function.

ApoA-1 Mimetic Peptides Promoting Lipid Efflux from Cells for Treatment of Vascular Disorders

This invention involves ApoA-1 mimetic peptides with multiple amphipathic alpha-helical domains that promote lipid efflux from cells and are useful in the treatment and prevention of dyslipidemic, inflammatory and vascular disorders. IND-enabling studies for one of the peptides, named Fx-5A, are completed in preparation for an IND filing at the FDA, to be followed by a Phase I clinical trial planned for 2017.

Selections of Genes

The invention provides selections of genes expressed in a cancer cell that function to characterize such cancer, and methods of using the same for diagnosis and for targeting the therapy of selected cancers. In particular, methods are provided to classify cancers belonging to distinct diagnostic categories, which often present diagnostic dilemmas in clinical practice, such as the small round blue cell tumors (SRBCTs) of childhood, including neuroblastoma (NB), rhabdomyosarcoma RMS), Burkitt’s lymphoma (BL), and the Ewing family of tumors (EWS).