Gene-based Diagnostic Predicts Patient Response to Cancer Immunotherapy

Immunotherapy is a promising method of treating cancer that leverages the immune system to promote tumor rejection. However, certain somatic mutations in cancer cells confer resistance to T cell-mediated cytolysis. To improve the effectiveness of immunotherapies for cancer, there exists a need to prospectively identify patients who are most likely to respond to such therapies.

Novel Methods for Reducing Inflammation and Treating Diseases such as Parkinson's and Alzheimer's Disease

Microglia activation leads to inflammation mediated dopaminergic degeneration in the brain of patients with Parkinson and Alzheimer's Disease. Thus Identification of drugs that reduce microglia activation could prevent or reverse neuronal degeneration in these diseases and other degenerative CNS disorders.

ApoA-1 Mimetic Peptides Promoting Lipid Efflux from Cells for Treatment of Vascular Disorders

This invention involves ApoA-1 mimetic peptides with multiple amphipathic alpha-helical domains that promote lipid efflux from cells and are useful in the treatment and prevention of dyslipidemic, inflammatory and vascular disorders. IND-enabling studies for one of the peptides, named Fx-5A, are completed in preparation for an IND filing at the FDA, to be followed by a Phase I clinical trial planned for 2017.

Selections of Genes

The invention provides selections of genes expressed in a cancer cell that function to characterize such cancer, and methods of using the same for diagnosis and for targeting the therapy of selected cancers. In particular, methods are provided to classify cancers belonging to distinct diagnostic categories, which often present diagnostic dilemmas in clinical practice, such as the small round blue cell tumors (SRBCTs) of childhood, including neuroblastoma (NB), rhabdomyosarcoma RMS), Burkitt’s lymphoma (BL), and the Ewing family of tumors (EWS).

Tyrosyl-DNA Phosphodiesterases (TDP) and Related Polypeptides, Nucleic Acids, Vectors, TDP-Producing Host Cell, Antibodies and Methods of Use

Topisomerases are cellular enzymes that are vital for replication of the genome. However, if topisomerase and DNA form covalent complexes that prevent the resealing of DNA, this may lead to cell death. Essentially, this invention consists of a new isolated and cloned enzyme, tyrosyl-DNA phospodiesterase (TDP1) that is capable of hydrolyzing the covalent complexes between topisomerase and DNA, allowing the DNA to reseal.

Method of Diagnosing Multidrug Resistant Tuberculosis

The invention can be used to develop tests that are much more rapid than conventional tests for determining drug resistance. It relates to the discovery that a putative gene of Mycobacterium tuberculosis (MTb) with no previously identified function is responsible for the ability of the bacteria to activate a class of second line thioamide drugs used for MTb infections. The gene, termed "etaA", codes for the synthesis of a monooxygenase, the enzyme responsible for the oxidative activation of the drugs.

Methods for Diagnosis of Atherosclerosis

The identification of more sensitive and specific markers of atherosclerosis that are non-invasive and cost-effective may have profound impacts on public health. One such strategy involves the detection of marker genes or their products in blood or serum. Such markers may help identify high-risk patients with subclinical atherosclerosis who may benefit from intensive primary prevention or they may help determine the activity of established disease for monitoring response to treatment, resulting in more targeted secondary prevention.

Farnesyltransferase Inhibitors for Treatment of Laminopathies, Cellular Aging and Atherosclerosis

Hutchinson-Gilford Progeria Syndrome (HGPS) is a very rare progressive childhood disorder characterized by premature aging (progeria). Recently, the gene responsible for HGPS was identified (Eriksson M, et al. Nature 2003), and HGPS joined a group of syndromes — the laminopathies — all of which are caused by various mutations in the lamin A/C gene (LMNA). Lamin A is one of the family of proteins that is modified post-translationally by the addition of a farnesyl group.

Tristetraprolin (TTP) Knockout Mice

National Institutes of Health researchers have developed knockout mice that do not express Tristetraprolin (TTP). TTP is an AU-rich element (ARE) binding protein and the prototype of a family of CCCH zinc finger proteins. AREs were identified as conserved sequences found in the 3’ untranslated region (3’ UTR) of a variety of transiently expressed genes including early response genes, proto-oncogenes, and other growth regulatory genes. AREs function as instability sequences that target ARE-containing transcripts for rapid mRNA decay.