Local Positioning System for Position-Time-Condition Correlation, Data-logging and Analysis

This CDC-developed technology describes an automated system for monitoring worker hazard exposures by recording data about where and when hazards occur in a workplace or other environment. This allows the hazards to be avoided and harmful exposures and risks reduced. This field-tested technology consists of an integrated, hand-held electronics instrument and software system that will precisely correlate multiple exposure levels with position coordinates of the user and features real-time data acquisition.

Improved Acoustic Plethysmograph System for Noninvasive Measurement of Pulmonary Function

CDC researchers have developed a novel acoustic whole body plethysmograph (AWBP) that allows measurement of tidal volume in lab animals, independent of gas compression in the lung. This system provides particular advantages over the traditional whole body plethysmograph (WBP) when measuring model animals with increased gas compression due to increased airway resistance or increased acceleration in the breathing pattern.

Hearing Safety Devices: System for Monitoring Exposure to Impulse Noise

This CDC-developed technology entails a system for monitoring and assessing the risk of auditory damage from exposure to impulse noise, such as noise created by construction machinery and firearms. Noise dosimeters have been used extensively over the past two decades to document personal exposure to noise and assure workplaces comply with permissible noise exposure levels. However, due to older methods of calculating "noise dose," current noise dosimeters often inaccurately determine the risk of an impulse event.

Occupational Safety: Portable Exposure Assessment System for Prevention of Musculoskeletal Injury

CDC researchers have developed the Portable Exposure Assessment System (PEAS), a field-based, remotely deployed tool to monitor and provide early warning of working conditions that have a high likelihood of musculoskeletal injury. PEAS is a noninvasive, real-time, instrument-based system. Sensor technology simultaneously measures and collects data regarding the body loads and awkward postures imposed by package handling as well as driving-related, low-frequency vibrations.

Fluorescent Primer(s) Creation for Nucleic Acid Detection and Amplification

CDC researchers have developed technology that consists of a simple and inexpensive technique for creating fluorescent labeled primers for nucleic acid amplification. Fluorescent chemical-labeled probes and primers are extensively used in clinical and research laboratories for rapid, real-time detection and identification of microbes and genetic sequences. During nucleic acid amplification, the "UniFluor" primer is incorporated into newly synthesized double stranded DNA.

Photoinduced Electron Transfer Fluorescent Primer for Nucleic Acid Amplification

CDC scientists have developed a rapid and cost-efficient method for generating fluorescently labeled primers for PCR and real-time PCR. At present, fluorescent primers are useful for detecting and identifying microbes and specific nucleic acid sequences, amplifying nucleic acids for pyro-sequencing, determining the levels of gene expression, and many other uses. However, problems exist with current techniques used to create fluorescent primers. For one, labeling is not one hundred percent efficient, leading to inaccurate results.

Use of Detector Response Curves to Optimize Settings for Mass Spectrometry

This CDC developed optimization technology allows one to characterize the behavior of the coefficient of variation (CV) for a range of mass spectrometer machine settings. Surface-enhanced laser desorption/ionization (SELDI) and matrix-assisted laser desorption/ionization (MALDI) are used for the early detection of numerous diseases, for example cervical cancer . A critical step in the analytical process is the optimization of experiment and machine settings to ensure the best possible reproducibility of results, as measured by the CV.

Autodock Vina Software Process for Efficient Large-Scale Cognate Ligand Screening

The invention pertains to software processes, additions, and docking approaches to Autodock Vina that speeds the rate and efficiency of analyzing ligand interactions with a receptor by cognate ligands and rewards conformations in the scoring algorithm for residue interactions that are based on the biological data. The score is multiplied by a weighting factor to control the degree of ligand-residue interactions that are considered. This multiplier is then added to the docking score for confirmation.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Automated Microscopic Image Acquisition, Compositing and Display Software Developed for Applied Microscopy/Cytology Training and Analysis

Micro-Screen is a CDC developed software program designed to capture images and archive and display a compiled image(s) from a portion of a microscope slide in real time. This program allows for the re-creation of larger images that are constructed from individual microscopic fields captured in up to five focal planes and two magnifications. This program may be especially useful for the creation of data archives for diagnostic and teaching purposes and for tracking histological changes during disease progression.