Mutants Having a Deficit of Functional Steroid Hormone Receptors

This invention concerns "knockout" animals, including mice, which have a deficit of functional steroid hormone receptors, DNA constructs containing the mutations, and methods for producing the animals. The mutation is introduced into the animal or its ancestors at an embryonic stage. These knockout animals provide a model system for studying the biological role of hormones, including steroid hormones and sex steroids, in growth, development, morphological differentiation, and sexual and reproductive behavior and cycles, etc.

A Mouse Model for Type 2 Diabetes

Diabetes affects over 120 million people worldwide (16 million in the US) and is a major health problem with associated health costs estimated at almost $100 billion dollars. Type 2 diabetes affects as many as 10% of the population of the Western World (with 15 million patients in the US alone) and arises from a heterogeneous etiology, with secondary effects from environmental influences. Risk factors for type 2 diabetes include obesity, high blood pressure, high triglycerides and age.

A Tet-Regulated Mouse Model for Cataract

Cataract is the most common cause of blindness worldwide, with an estimated 25 million blind and 119 million visually impaired individuals worldwide. Over 20 million adults in the US alone are currently diagnosed with cataracts making this disease a major health concern. The incidence of cataract increases with age and a number of etiologic factors have been proposed in the pathogenesis of age-related cataract in humans including genetic factors, environmental factors and metabolic and biochemical changes in the crystalline lens.

Vesicular Stomatitis virus (VSV)-based Vaccine against Sudan Virus

There are five known Ebolavirus species: Ebola virus (Zaire ebolavirus); Sudan virus (Sudan ebolavirus or SUDV); Taï Forest virus (Taï Forest ebolavirus, formerly Cote d'Ivoire ebolavirus); Bundibugyo virus (Bundibugyo ebolavirus); and Reston virus (Reston ebolavirus). Last year an ebolavirus outbreak resulted in 164 cases and 55 deaths. While there is an FDA-approved Ebola virus vaccine authorized for use against Ebola virus infections, ERVEBO, this vaccine is not effective against SUDV due to the significant variation between Ebola virus and SUDV.

Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease

This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.

Method to Detect and Quantify In Vivo Mitophagy

This technology includes a transgenic reporter mouse that expresses a fluorescent protein called mt-Keima, to be used to detect and quantify in vivo mitophagy. This fluorescent protein was originally described by a group in Japan and shown to be able to measure both the general process of autophagy and mitophagy. We extended these results by creating a living animal so that we could get a measurement for in vivo mitophagy. Our results demonstrate that our mt-Keima mouse allows for a straightforward and practical way to quantify mitophagy in vivo.

Transgene Free Non-human Primate Induced Pluripotent Stem Cells (iPSCs) for Use in Pre-clinical Regenerative Medicine Research

This technology includes rhesus macaque induced pluripotent stem cells (iPSCs) lines from multiple animals and various types of cells to establish this pre-clinical model. iPSCs are a type of pluripotent stem cell that can be generated from adult somatic cells. The iPSC technology holds great potential for regenerative medicine. Before clinical application, it is critical to evaluate safety and efficacy in a clinically-relevant animal model. We propose that non-human primate models are particularly relevant to test iPSC-based cell therapies.

DLX3-floxed mice (DLX3f/f) for Use in Drug Development and In Vivo Research Studies for Ectodermal Dysplasia Disorders

This technology includes the creation of DLX3-floxed mice, specifically designed for conditional deletion of the DLX3 gene via Cre-mediated recombination. This innovative approach aims to develop mouse models for studying ectodermal dysplasia disorders. Ectodermal dysplasias are a diverse group of genetic conditions affecting the development of ectodermal structures, including hair, teeth, and bones. The DLX3f/f mice are particularly valuable for modeling specific disorders such as Tricho-dento-osseous syndrome (TDO), Amelogenesis Imperfecta (AI), and Dentinogenesis Imperfecta (DI).

DLX3 Knockout Mice for the Study Mouse Models of Tooth, Hair, and Epidermal Defects

This technology includes K14creDLX3 conditional knockout (cKO) mice which will be used to study ectodermal dysplasia disorders such as Amelogenesis Imperfecta, and to study molecular mechanisms of DLX3 regulation in skin and ectodermal appendages. DLX3 is expressed in the epidermis, hair matrix cells in the hair follicle and in the mesenchymal and epithelial compartment of the tooth during embryonic development. To determine the transcriptional network dependent on DLX3-function, we will generate and analyze an epithelial-specific conditional knockout of DLX3.

Mouse Model of Pompe Disease for Therapy Discovery

This technology includes a mouse model of Pompe disease, created by targeted inactivation of the acid alpha-glucosidase gene, to test novel therapies. Pompe disease is a severe muscle disorder that affects people at any age. It is a rare genetic disease caused by a deficiency of a lysosomal enzyme acid alpha-glucosidase. The enzyme degrades glycogen to glucose in the lysosomes. The deficiency leads to accumulation of glycogen in multiple organs, but cardiac and skeletal muscles are most severely affected.