Improved Acoustic Plethysmograph System for Noninvasive Measurement of Pulmonary Function
Peanut therapeutics and diagnostics to treat severe food allergies
Up to 10% of the US population suffers from food allergies, with more than 40% of those experiencing life-threatening anaphylaxis. Peanut is one of the most common food allergens that give rise to persistent IgE-mediated food allergy. Oral immunotherapy (OIT) is used to reduce sensitivity to an allergen through repeated, small-dose exposure to the allergen. However, only a subset of patients develop a sustained response to the allergen and OIT carries notable side effects.
Generation of Artificial Mutation Controls for Diagnostic Testing
Next-Generation 5-HT-2B Serotonin-Receptor Antagonists for Anti-Fibrotic & Cardiopulmonary Therapy
This technology includes a family of small-molecule antagonists that selectively block the 5-HT2B serotonin receptor—an upstream driver of tissue-remodeling—to address fibrotic, cardiopulmonary and related disorders. Built on a conformationally-locked “(N)-methanocarba” nucleoside scaffold, the compounds show nanomolar potency, >30–400-fold selectivity over the closely related 5-HT2C receptor, and favorable oral bioavailability in rodents.
First in class Small Molecule Agonists of the mammalian Relaxin family receptor 1 (RXFP1) and use in treatment of cancer, fibrotic, and vascular disorders (HHS Ref No. E-145-2024-0-US-02)
It is well documented in literature that activation of RXFP1 by relaxin induces: 1) up-regulation of the endothelin system which leads to vasodilation; 2) extracellular matrix remodeling through regulation of collagen deposition, cell invasiveness, proliferation, and overall tissue homeostasis; 3) a moderation of inflammation by reducing levels of inflammatory cytokines, such as TNF-a and TGF-b; and 4) angiogenesis by activating transcription of VEGF.
P2Y14 Receptor Antagonists for the Treatment of Inflammatory Diseases, Including Pulmonary and Renal Conditions and Chronic Pain
This technology includes the development of selective P2Y14R antagonists for the treatment of asthma, sterile inflammation of the kidney, diabetes, and neurodegeneration. The P2Y14 receptor (P2Y14R) is a target for the treatment of inflammatory diseases, including pulmonary and renal conditions. Selective P2Y14R antagonists have demonstrated efficacy in animal models of asthma, pain, diabetes, and acute kidney injury. However, the prototypical antagonist is not optimal for in vivo administration, as it displays a low oral bioavailability.