Truncated (N)-Methanocarba Nucleosides as Al Adenosine Receptor Agonists and Partial Agonists: Receptor Docking and Potent Anticonvulsant Activity for the Treatment of Various Conditions

This technology includes A1AR-selective agonists which are full or partial agonists of the A1AR and are being considered for treatment of various conditions: seizures, stroke, diabetes, pain, cardio-protection and arrhythmias. A1AR agonists are highly neuroprotective in ischemic and epileptic models. A1AR agonists are also being explored for antidepressant, antianxiety, and other neuropsychiatric effects, due to their presynaptic action to decrease the release of excitatory amino acids in the brain.

Figla-Cre Transgenic Mice Expressing Myristoylated EGFP in Germ Cells as a Model for Investigating Perinatal Oocyte Dynamics

This technology includes a transgenic mouse model which can be used to study perinatal oocyte dynamics. In the first two days after birth, the number of primordial ovarian follicles and their germ cells undergo a major decrease. The mechanism for this decrease was studied. Ablation of FIGLA (Factor in the germline, alpha), a basic helix-loop-transcription factor, results in massive perinatal oocyte loss. A transgenic mouse line was established, Figla-EGFP /Cre, in which EGFP and Cre recombinase are expressed just before birth in germ cells.

Vectors for the Treatment of Sickle Cell Disease and Beta Thalassemia

This technology includes lentivirus vectors to be used to treat sickle cell disease and beta thalassemia. (i) Lin28A or Lin28B vectors designed for erythroid-specific expression using EKLF1, SPTA1, or similar erythroid-specific regulatory elements will be used to transduce hematopoietic stem cells isolated from humans with sickle cell disease or beta-thalassemia syndromes.

Transgenic Mice with Conditionally Activated Islet Beta Cell M3 Muscarinic Acetylcholine Receptor for Improving Glucose Tolerance in High-fat Diet Obese Insulin-resistant Mice

This technology includes transgenic mice in which designer rat M3 muscarinic receptor mutants were expressed only in islet 13-cells (directed by rat insulin promoter II), were unable to bind acetylcholine (the endogenous ligand) but could be selectively activated by an otherwise pharmacologically inert compound (clozapine-N-oxide (CNO)). The R-q receptor contained a Y148C point mutation, which enabled CNO to selectively activate G proteins of the Gq/11 family. The R-5 receptor contained an A238G mutation, which enabled CNO to selectively activate G proteins of the G5 family.

Identification and Characterization of the Wild Mouse Gut Microbiome as the Optimal Standard for Laboratory Mice

This technology includes identification of the wild mouse microbiome as a method to increase resistance to lethal viral infection. We establish that the gut microbiome of barrier-raised C57BL/6 mice is dysbiotic compared to that of their outbred, wild-living progenitors, Mus musculus domesticus. We find that the multigenerational offspring of pregnant germfree C57BL/6 mice reconstituted with the gut microbiome of wild mice exhibit a less inflammatory response and increased survival following influenza A virus infection.

High-Resolution and Artifact-Free Measurement and Visualization of Tissue Strain by Processing MRI Using a Deep Learning Approach

This technology includes a system for automatic artifact-free measurement and visualization of tissue strain by MRI at native resolution. The investigation of regional soft tissue mechanical strain can serve as a unique indicator for different related disorders. For example, measurement of myocardial tissue during contraction can help calculate, track, and assess cardiac stress. Currently, methods such as tagging MRI (tMRI) are used for imaging soft tissue deformation. Despite being well validated, methods such as tMRI suffer from low spatial and temporal resolution.

Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents

Homocystinuria (HCU), a group of inherited disorders, causes symptoms ranging from failure to thrive and developmental delays in infants or young children to abnormal blood clots with onset in adults.1 Approximately 1 in 200,000 to 335,000 people have HCU globally.2

Minibody for Conditioning prior to Hematopoietic Stem Cell and Progenitor Cell Transplantation

Patient conditioning is a critical initial step in hematopoietic stem and progenitor cell (HSPC) transplantation procedures to enable marrow engraftment of infused cells. Conditioning regimens have traditionally been achieved by delivering cytotoxic doses of chemotherapeutic agents and radiation. However, these regimens are associated with significant morbidity and mortality, and cannot be used safely in elderly or subjects with comorbidities.

Oral Treatment of Hemophilia

This invention portrays a simple method for treatment of antigen-deficiency diseases by orally administering to a subject a therapeutically effective amount of the deficient antigen, wherein the antigen is not present in a liposome. This method increases hemostasis in a subject having hemophilia A or B, by orally administering to the hemophiliac a therapeutically effective amount of the appropriate clotting factor, sufficient to induce oral tolerance and supply exogenous clotting factor to the subject.