Handwipe Disclosing Method for Detecting the Presence of Lead
2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva
TYROSINASE Gene Therapy for Oculocutaneous Albinism type 1A
Summary:
The National Eye Institute seeks research co-development partners and/or licensees for an adeno-associated viral gene therapy for Oculocutaneous Albinism type 1A.
Metformin for the Treatment of Age-related Retinal Degeneration
Retinal Degenerations (RD) are the leading cause of blindness in the United States. The degeneration of the Retinal Pigment Epithelium (RPE) is associated with various types of RD such as Stargardt’s disease, retinitis pigmentosa, choroideremia, Late-Onset Retinal Degeneration (L-ORD), and Age-related Macular Degeneration (AMD). The RPE as a layer of cells in the back of the eye. Therefore, it is essential to maintain the health and integrity of retinal photoreceptors.
New Insect Sf9-ET Cell Line for Determining Baculovirus Titers
The baculovirus-based protein expression system has gained increased prominence as a method for expressing recombinant proteins that are used in a wide range of biomedical applications. An important step in the use of this system is the ability to determine the virus infectious titer, i.e., the number of active baculovirus particles produced during an infection of the insect host cell.
Bac-2-the-Future: An Improved System for Production of Recombinant Baculovirus
Baculoviruses have been used for decades to produce proteins in insect cell hosts. Current systems for generating recombinant baculovirus have several shortcomings which prevent their easy use in high-throughput applications.
3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery
Degeneration of retinal tissues occurs in many ocular disorders resulting in the loss of vision. Dysfunction and/or loss of Retinal Pigment Epithelium Cells (RPE) and disruption of the associated blood retinal barrier (BRB) tissue structures are linked with many ocular diseases and conditions including: age-related macular degeneration (AMD), Best disease, and retinitis pigmentosa. Engineered tissue structures that are able to replicate the function of lost BRB structures may restore lost vision and provide insight into new treatments and mechanisms of the underlying conditions.
Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes for the Treatment of Glaucoma
Glaucoma is one of the world’s leading causes of irreversible blindness. There is no cure and vision lost from glaucoma cannot be restored. Glaucoma is associated with fluid build-up in the eye resulting in an increased intraocular pressure (IOP). The pressure may cause damage to the optic nerve and lead to progressive degeneration of retinal ganglion cells (RGC) and vision loss. Currently, available treatments for glaucoma delay progression by reducing IOP, but no therapies exist to directly protect RGC from degradation and loss.
Method for Reproducible Differentiation of Clinical Grade Retinal Pigment Epithelium Cells
The retinal pigment epithelium (RPE) is a cell monolayer with specialized functions crucial to maintaining the metabolic environment and chemistry of the sub-retinal and choroidal layers in the eye. Damage or disease causing RPE cell loss leads to progressive photoreceptor damage and impaired vision. Loss of RPE is observed in many of the most prevalent cases of vision loss, including age related macular degeneration (AMD) and Best disease.