Murine Models of an Autoinflammatory Disease, Familial Mediterranean Fever (FMF), to Study the Pathophysiology of Inherited Disorders of Inflammation and Evaluate New Therapies

This technology includes mouse models (heterozygous for the knock-in (KI) and homozygous for the knock-out (KO)) to be used as research reagents and to study molecular mechanisms and potential therapies for Familial Mediterranean fever (FMF). FMF is the prototype of a group of inherited disorders characterized by recurring, spontaneous episodes of fever and localized inflammation. The gene responsible for FMF is composed of 10 exons encoding a 781 amino acid protein known as pyrin.

Human Fibroblast Cell Lines from Patients with Gangliosidosis Diseases for the Screening of Disease Therapeutics

This technology includes cell lines from patients with gangliosidosis diseases for the screening of potential therapeutics. Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. GM1 gangliosidosis is an ultra-rare lysosomal storage disorder caused by mutations in galactosidase beta 1 (GLB1) that result in a deficiency of beta-galactosidase. GM2 gangliosidoses are a group of autosomal recessive lysosomal storage disorders caused by accumulation of GM2 ganglioside due to the absence or near absence of B-hexosamindase.

Fibroblast Cell Lines (with L444P/RecNci1 Genotype) for the Screening of Small Molecules for Gaucher Disease Treatment

This technology includes two human fibroblast cell lines to be used to study the defects in GBA1 gene and protein and to screen small molecules for involvement in Gaucher disease. Glucocerebrosidase (GBA1 or GCase or beta-glucosidase) is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides in tissues, which is a major symptom of Gaucher disease.

Fibroblast Cell Lines Homozygous for Glucocerebrosidase (GBA1) Mutation N370S for the Screening of Small Molecules for Gaucher Disease Treatment

This technology includes two human fibroblast cell lines be used to study the defects in GBA1 gene and protein and to screen small molecules for involvement in Gaucher disease. Glucocerebrosidase (GBA1 or GCase or beta-glucosidase) is a lysosomal enzyme, responsible for breakdown of a fatty material called glucocerebroside (or glucosyl ceramide). Deficiency or malfunction of GBA1 leads to the accumulation of insoluble glucocerebrosides in tissues, which is a major symptom of Gaucher disease. Gaucher disease is a rare and heterogeneous disorder, caused by inherited genetic mutations in GBA1.

Mouse Model Created Using Glucocerebrosidase-Deficient Neuronal Cell Line to Study Gaucher Disease Pathophysiology and Evaluate New Therapies

This technology includes a high-yield, easy-to-culture mouse neuronal cell model with nearly complete glucocerebrosidase deficiency representative of Gaucher disease (GD) to study pathophysiology and evaluate new therapies. GD is an autosomal recessive lysosomal storage disorder caused by loss-of function mutations in the GBA1 gene, which codes for the lysosomal hydrolase glucocerebrosidase (GCase).

Staphylococcus Epidermidis Isolates from Human Skin Samples for Use as Clinical Molecular Markers

This technology includes a catalog of commensal and pathogenic staphylococci from human skin for utilization as clinical molecular markers of skin conditions and infections. The study of microbial diversity of human skin in both healthy and disease states is important to develop tools to track infections, outbreaks, and multi-drug resistant organisms, particularly in atopic dermatitis, eczema and other microbial-associated infections. Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates.

Lymphoblastoid Cell Lines with a Specific Allele of ABCA7 Gene for the Screening of Small Molecules for Therapeutic Development

This technology includes lymphoblastoid cell lines from individuals genotyped as carrying the minor (G) allele of ABCA7 SNP rs113809142 [ss491752998; SNV-chr19-1007244], to be used for small molecule screening and eventual therapeutic development. The ABCA7 gene is the ATP-binding cassette, sub-family A (ABC1), member 7. It encodes a protein that is a transporter and has been associated with such diseases as neonatal respiratory failure and Asperger's syndrome. It is also known to play a role in phagocytosis of apoptotic cells by macrophages and may mediate cholesterol efflux.

Mouse Model of Hutchinson-Gilford Progeria Syndrome (HGPS) and Vascular Abnormalities (G608G) mutated form of human LNMA) for Therapeutic Development

Children with Hutchinson-Gilford progeria syndrome (HGPS) suffer from acceleration of certain aging symptoms, mainly cardiovascular disease that generally leads to death from myocardial infarction and/or stroke. The cause of HGPS has been discovered to be a de novo point mutation in lamin A (LNMA) gene. NHGRI Scientist have generated a transgenic mouse model of HGPS. This mouse carries a bacterial artificial chromosome (BAC) with a De novo mutation 1824 C to T (G608G) mutated form of human LNMA.

Human Cell Lines with Mannosyl Oligosaccharide Glucosidase (MOGS) Defect for the Study and Prevention of Infection

This technology includes human cell lines from patients who have genetic defects in MOGS, the gene encoding mannosyl-oligosaccharide glucosidase, causing the rare congenital disorder of glycosylation type IIb, also known as MOGS-CDG. This defects appears to impair the ability of viruses to infect a second round of cells, which can be used to study and prevent infections. This is likely related to impaired viral replication and cellular entry. This finding has implications for Ebola and Zika, as well as other viral infections.

Human Fibroblast Cell Lines with PMM2 Congenital Disorder of Glycosylation for Therapeutic Development

Congenital disorders of glycosylation (CDGs) are inherited disorders of abnormal protein glycosylation that affect multiple organ systems. More than 100 different CDGs have been described, affecting protein and lipid glycosylation. NHGRI investigators have been able to isolate fibroblasts from patients with PMM2 (phosphomannomutase)-CDG, also known at CDG type Ia, which is an inherited, broad-spectrum disorder with developmental and neurological abnormalities.