Small Molecule Inhibitors of the Ferroptosis Programmed Cell Death Pathway

This technology includes the identification and use of small molecules to rescue cells undergoing ferroptosis, a type of programmed cell death. These small molecules can be used as treatments in situations where epithelial cells are being damaged, including respiratory disorders, brain injury (including traumatic brain injury), renal injury, radiation-induced injury, and neurodegenerative disorders. Ferroptosis is a type of programmed cell death that is triggered by an increased presence of oxidants.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes the use of a new class of molecules (nanomolar ALK2 inhibitor) to impede bone morphogenetic proteins (BMP) signaling for the treatment of Fibrodysplasia ossificans progressiva (FOP). FOP is a rare disease, characterized by malformation of the great (big) toes during embryonic development. Individuals with FOP have an identical heterozygous activating mutation (R206H) in the gene encoding ACRV1 (also known as ALK2), a BMP type 1 receptor.

Small Molecule Inhibitors of Alpha IIb Beta 3 Receptor for Potential Therapeutic Intervention within Myocardial Infarction and Stroke

This technology includes methods for screening compounds and compositions useful for inhibiting or reducing platelet deposition, adhesion, and/or aggregation. The present invention further relates to methods of treatment or prophylaxis of thrombotic disorders, including stroke, myocardial infarction, unstable angina, abrupt closure following angioplasty or stent placement, thrombosis induced by peripheral vascular surgery, peripheral vascular disease or thrombotic disorders resulting from atrial fibrillation or inflammation.

Process for Synthesis of VBP15 as a Treatment for Duchenne Muscular Dystrophy

This technology includes processes for the synthesis of VBP15 (17a,21-dihydroxy-16a-methyl-pregna-1,4,9(11)-triene-3,20-dione) of high purity and large quantities as a treatment for Duchenne muscular dystrophy. The synthesis of VBP15 has several deficiencies which has hindered larger-scale preparation for clinical evaluation and potential manufacturing. The deficiencies included formation of significant levels of undesired epoxide impurity, formation of undesired ketone impurity, and resultant need for costly chromatographic purification.

Rapid and Robust Differentiation of Human iPSCs into Motor Neurons

This technology includes a system that allows for robust differentiation of human-induced pluripotent stem cells (iPSC) into motor neurons within a time frame of 7 to 10 days. To differentiate the iPSC, a stable transgene is inserted into the CLYBL safe harbor locus in the human genome using TALENs. The transgene allows for doxycycline-inducible expression of the transcription factors (NGN2, ISL1, and LHX3) that are needed for the cells to differentiate to motor neurons. The technology is described in detail in the protocol paper published by Fernandopulle et al, cited below.

Preparation of Substituted Diarylpropanamides as RORgt Antagonists for the Treatment of Th17-related Autoimmune Diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response. The novel molecules have potential to treat Th17-related autoimmune diseases.

Amido compounds as RORgt Modulators for the Treatment of Th17-related Autoimmune Diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Potent and selective RORgt inhibitors can be used to developed novel treatments for Th17-related autoimmune diseases

This technology includes a series of diphenylpropanamides as potent and selective RORgt inhibitors for the treatment of Th17-related autoimmune diseases. The retinoic acid-related orphan receptor RORgt plays an important role in the differentiation of thymocytes, lymphoid tissue inducer cells, and inflammatory T helper-expressing interleukin 17a (Th17) cells. Small molecule RORgt inhibitors may provide means to regulate Th17 mediated immune response.

Remodelins, a New Class of Compounds to Prevent Airway Remodeling and to Treat and Prevent Fibrosis in Multiple Organs

This technology includes a new class of compounds, called remodelins, which can be used to prevent airway remodeling and prevent lung fibrosis. Currently no effective therapies are available for lung fibrosis. This compound could also be employed as a treatment for asthma.