A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.

Advanced Human Cell Line Technology for RSV Replication Complex Production and Antiviral Drug Discovery

This technology includes the NeurEx® mobile application, a groundbreaking tool designed for neurologists to conduct and document neurological examinations efficiently. Deployed on iPads, it integrates with a secure, cloud-based database, automating the computation of four key disability scales used in neuroimmunology. The app's robust design enables precise mapping of neurological deficits, blending spatial distribution with quantitative assessments.

Next-Generation MSP1-Targeted Malaria Immunotherapy: Enhanced Vaccine Candidates and Monoclonal Antibodies

This technology encompasses the development of highly advanced malaria vaccine candidates and human monoclonal antibodies, both centered on targeting the Merozoite Surface Protein 1 (MSP1) of the Plasmodium falciparum malaria parasite. The innovation lies in utilizing a novel computational design and in vitro screening process, which has created MSP1 vaccine candidates that are significantly more immunogenic, stable, and cost-effective than existing alternatives. These vaccines focus on the 19 kDa carboxy-terminus fragment of MSP1.

Application of AAV44.9 Vector in Gene Therapy for the Inner Ear

This technology includes a novel AAV isolate (AAV44.9) to be used as gene therapy for the inner ear for the treatment of deafness. The ability of AAV vectors to transduce dividing and non-dividing cells, establish long-term transgene expression, and the lack of pathogenicity has made them attractive for use in gene therapy applications. Vectors based on new AAV isolates may have different host range and different immunological properties, thus allowing for more efficient transduction in certain cell types.

In-vivo System to Interrogate the Functions of Mucous Membranes and Identify Mucin/Glycan Mimetics and JAK/STAT Inhibitors for the Treatment of Diseases of the Oral Cavity and Digestive Tract

This technology includes a Drosophila mutant strain that can be used as an in vivo model for diseases of the oral cavity and digestive tract (Sjogren's syndrome, colitis, colon cancer, inflammatory bowel disease), where the mucous membrane is disrupted or non-functional. This mutant lacks a mucous membrane and displays epithelial cell damage, uncontrolled cell proliferation and the up-regulation of conserved signaling pathways (JAK/STAT).

Chimeric Antibodies Against Hepatitis B e-Antigen

The invention relates to recombinant chimeric rabbit/human monoclonal antibody fragments (Fabs) against hepatitis B Virus e-antigen (HBeAg), notably Fab me6. Viral hepatitis is the seventh leading cause of death worldwide. Hepatitis B core antigen (HBcAg) forms an icosahedral structure containing the viral genome. Both the HBcAg and the HBeAg of interest here are expressed by two different start codons of the viral C gene. Unlike the related HBcAg which activates type 1 T helper (Th1) cells leading to immune attack, the HBeAg activates Th2 cells which promote immune tolerance.

Locally Delivered Alkaline Phosphatase for Treatment of Periodontal Disease

This technology includes a product for local delivery of alkaline phosphatase for the treatment of periodontal disease. Our laboratory has discovered that factors regulating phosphate metabolism and specifically the appropriate balance between phosphate (Pi) and pyrophosphate (PPi) at local sites are needed for formation (development), maintenance and regeneration of the tooth root surface (cementum), periodontal ligament (PDL) and surrounding alveolar bone, i.e., the periodontal apparatus.

Antigen Mixtures for Serological Detection of HHV-8 Infection

This invention describes a highly specific and sensitive serological test for human herpesvirus 8 (HHV-8) infection that uses the Luciferase Immunoprecipitation System (LIPS). A mixture of four virus-specific antigens, including K8.1, v-cyclin, ORF65 and LANA, was shown to provide more robust detection of HHV-8 infection than traditional methods due its ability to detect very low viral loads.