Identification of a Novel Parvovirus for Vaccine Development and Use as a Diagnostic Tool

This technology includes a procedure for novel virus identification in a variety of human specimens by solexa high-throughput sequencing, which allows for the screening a large number of clinical specimens for novel virus discovery in a highly efficient and relatively economical method. By using this technique, we have successfully identified a novel parvovirus from samples of seronegative hepatitis patients.

Monoclonal Antibodies for the Detection of Antiretroviral Integrase Inhibitors

Pre-exposure prophylaxis (PrEP) is a critical component in the fight against HIV but is only effective if persons prescribed PrEP are adhering to the regimens to maintain appropriate drug levels. As PrEP regimens have moved from daily pills to longer lasting injections, the ability to quickly measure and monitor the circulating drug levels of PrEP drugs has increased importance.

Infectious Clone of Human Parvovirus B19 and Methods of Use

This technology described in this patent application relates the first reported infectious human parvovirus B19 clone, methods of cloning the parvovirus B19 genome as well as other viral genomes that have secondary DNA structures that are unstable in bacterial cells. The infectious clone and methods of producing the same would be useful in producing infectious virus, which can in turn be used, among other things, to identify and develop therapeutic agents for treatment and/or prevention of human parvovirus B19 infections. The infectious parvovirus B19 clone is also available for licensing.

Monoclonal Antibodies to HIV-1 Vpr

Available for licensing are monoclonal antibodies against HIV-1 viral protein R (Vpr) and the respective hybridoma cell lines expressing the same. The antibodies provide a means for detecting HIV-1 Vpr. Currently, the mechanism of HIV pathogenesis believed to involve viral replication inside immune cells and other cells. At present, there are no clinical assays for detecting HIV-1 Vpr. Vpr circulates at detectable levels in the blood and is likely derived from degraded virions or released from infected cells. Vpr facilitates viral replication and disrupt normal cell function.

Modified Bacterial Strain for Otitis Media Vaccine

This invention relates to a strain of Moraxella catarrhalis containing a gene mutation that prevents endotoxic lipooligosaccharide (LOS) synthesis and potential use of the mutant for developing novel vaccines against the pathogen, for which there is currently no licensed vaccine. M. catarrhalis is one of the causative agents of otitis media (middle ear infection), sinusitis, and lung infections. The mutant is defective in the lpxA gene, whose enzyme product is relevant in lipid A biosynthesis (lipid A is part of the LOS).

Method of Diagnosing Multidrug Resistant Tuberculosis

The invention can be used to develop tests that are much more rapid than conventional tests for determining drug resistance. It relates to the discovery that a putative gene of Mycobacterium tuberculosis (MTb) with no previously identified function is responsible for the ability of the bacteria to activate a class of second line thioamide drugs used for MTb infections. The gene, termed "etaA", codes for the synthesis of a monooxygenase, the enzyme responsible for the oxidative activation of the drugs.

Recombinant MVA Viruses Expressing Clade A/G and Clade B Modified HIV Env, Gag and Pol Genes Useful for HIV Vaccine Development

The current technology relates to the construction, characterization and immunogenicity of modified vaccinia Ankara (MVA) recombinant viruses. The MVA double recombinant viruses express modified/truncated HIV-1 Env and mutated HIV Gag Pol under the control of vaccinia virus early/late promoters. This technology describes the MVA double recombinant viruses made by homologous recombination of single MVA recombinants, one expressing Env and one expressing Gag Pol. These single MVA recombinants are made using a transiently expressed GFP marker that is deleted in the final viruses.

Transmission-Blocking Vaccine Against Malaria (1)

A transmission blocking vaccine developed against malaria contains a recombinant virus, which encodes a unique portion of the sexual stage surface antigen of Plasmodium falciparum (referred to as Pfs25), or the Pfs25 protein purified from infected host cells. Mice inoculated with the recombinant virus developed antibodies capable of blocking transmission of the virus. None of the monoclonal antibodies known to block transmission recognize the reduced Pfs25 antigen. This vaccine, which induces high, long-lasting titers at low cost, can be useful for controlling malaria.