High-Resolution and Artifact-Free Measurement and Visualization of Tissue Strain by Processing MRI Using a Deep Learning Approach

This technology includes a system for automatic artifact-free measurement and visualization of tissue strain by MRI at native resolution. The investigation of regional soft tissue mechanical strain can serve as a unique indicator for different related disorders. For example, measurement of myocardial tissue during contraction can help calculate, track, and assess cardiac stress. Currently, methods such as tagging MRI (tMRI) are used for imaging soft tissue deformation. Despite being well validated, methods such as tMRI suffer from low spatial and temporal resolution.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

Reducing Bloodstream Neutrophils as a Treatment for Lung Infection and Inflammation

During lung infection, bloodstream neutrophils (PMNs) responding to infection travel to the airspace lumen. Although successful arrival of microbicidal PMNs to the airspace is essential for host defense against inhaled pathogens, excessive accumulation of PMNs in the lung contributes to the pathogenesis of several prevalent lung disorders, including acute lung injury, bronchiectasis, and COPD. Unfortunately, there is no treatment for controlling PMN accumulation in the lung.

Improved Cell Survival and Differentiation of Human Pluripotent Stem Cells by Combining Small Molecules Chroman-1 and Emricasan

This technology includes the use of the combination of the compounds Chroman-1 and Emricasan to achieve virtually 100% cell survival during human pluripotent stem cell passaging, cryopreservation/thawing, and differentiation in 2D and 3D cultures. Human pluripotent stem cells, including ESCs and iPSCs, are highly sensitive cells and undergo apoptosis during these routine procedures. A screening approach was used to identify the combination of the two compounds in this invention.

A Highly Efficient Differentiation Protocol for Placental Cells Derived from Human Pluripotent Stem Cells

This technology includes a robust and highly efficient protocol that differentiates human pluripotent stem cells (hPSCs) into the developmental precursor of placental cells, the trophectoderm (TE), under chemically defined conditions. The in vitro generation of TE cells holds great promise for modeling diseases of the placenta, drug screening, and cell-based therapies.

Small Molecule Inhibitors of the Ferroptosis Programmed Cell Death Pathway

This technology includes the identification and use of small molecules to rescue cells undergoing ferroptosis, a type of programmed cell death. These small molecules can be used as treatments in situations where epithelial cells are being damaged, including respiratory disorders, brain injury (including traumatic brain injury), renal injury, radiation-induced injury, and neurodegenerative disorders. Ferroptosis is a type of programmed cell death that is triggered by an increased presence of oxidants.

2-substituted Pyridines and Their Methods for Inhibiting BMP Signaling for the Treatment of Fibrodysplasia Ossificans Progressiva

This technology includes the use of a new class of molecules (nanomolar ALK2 inhibitor) to impede bone morphogenetic proteins (BMP) signaling for the treatment of Fibrodysplasia ossificans progressiva (FOP). FOP is a rare disease, characterized by malformation of the great (big) toes during embryonic development. Individuals with FOP have an identical heterozygous activating mutation (R206H) in the gene encoding ACRV1 (also known as ALK2), a BMP type 1 receptor.

Process for Synthesis of VBP15 as a Treatment for Duchenne Muscular Dystrophy

This technology includes processes for the synthesis of VBP15 (17a,21-dihydroxy-16a-methyl-pregna-1,4,9(11)-triene-3,20-dione) of high purity and large quantities as a treatment for Duchenne muscular dystrophy. The synthesis of VBP15 has several deficiencies which has hindered larger-scale preparation for clinical evaluation and potential manufacturing. The deficiencies included formation of significant levels of undesired epoxide impurity, formation of undesired ketone impurity, and resultant need for costly chromatographic purification.

Small Molecule Inhibitors of Alpha IIb Beta 3 Receptor for Potential Therapeutic Intervention within Myocardial Infarction and Stroke

This technology includes methods for screening compounds and compositions useful for inhibiting or reducing platelet deposition, adhesion, and/or aggregation. The present invention further relates to methods of treatment or prophylaxis of thrombotic disorders, including stroke, myocardial infarction, unstable angina, abrupt closure following angioplasty or stent placement, thrombosis induced by peripheral vascular surgery, peripheral vascular disease or thrombotic disorders resulting from atrial fibrillation or inflammation.