Novel Small Molecule Antimalarials for Elimination of Malaria Transmission

The transmission of malaria begins with injection of sporozoites into a human from the bite of a female anopheles mosquito, which initiates the malarial life cycle in humans. When a mosquito bites an infected human, the ingested male and female malaria gametocytes fuse to form a zygote that eventually becomes an oocyst. Each oocyst produces thousands of sporozoites which migrate to the mosquito salivary glands, ready to infect a new human host.

AMA1-RON2 Complex-Based Vaccine Against Malaria

This technology relates to a malaria vaccine composed of a protein complex of Apical Membrane Antigen (AMA1) and rhoptry neck protein 2 (RON2) with an adjuvant. AMA1 is a crucial component of the Plasmodium invasion machinery and is a leading candidate for antimalarial vaccine development. AMA1-based vaccines have shown ability to block red cell invasion in in vitro assays, but protection has so far not translated to in vivo human infections.

Anti-Vaccinia Monoclonal Antibody

The current technology describes a monoclonal antibody that reacts with a vaccinia virus protein abundantly expressed under an early viral promoter after infection of cells. The antibody is useful for quantitating vaccinia virus infected cells and for studying the function of the protein to which it binds, which is known to be a double stranded RNA binding protein involved in resistance of the virus to interferons. This antibody is available for licensing through a biological materials license agreement.

LRRK2 Inhibitors: Novel Treatment for Intestinal Bowel Disorders

Use of Leucine Rich Repeat Kinase 2 (LRRK2) inhibitors for the treatment of Intestinal Bowel Disorders (IBD) is disclosed. IBD is a broad term that describes conditions with chronic or recurring immune response and inflammation of the gastrointestinal tract. Crohn's disease and ulcerative colitis, two common forms of idiopathic IBD, are chronic, relapsing inflammatory disorders of the gastrointestinal tract.

CXCR4 Reduction Leads to Enhancement of Engraftment of Hematopoietic Stem Cells

Methods of enhancing engraftment of donor hematopoietic stem cells (HSCs) by reducing expression or activity of CXCR4 in HSCs is described. HSC are the only cells in the bone marrow that are both pluripotent and long lived. Bone marrow transplantation (BMT) using HSC is an increasingly common medical therapy for severe hematologic cancers and primary hematologic immunodeficiencies. However, for significant HSC engraftment to occur there must usually be pre-transplant conditioning with either irradiation or chemotherapy or both.

Prevention or Treatment of Viral Infections by Inhibition of the Histone Methyltransferases EZH1/2

Herpes simplex viral infections, including herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), are exceptionally common worldwide. These viruses establish lifelong persistent infections with cycles of lytic reactivation to produce recurrent diseases including oral and genital lesions, herpetic keratitis/blindness, congenital-developmental syndromes, and viral encephalitis. Infection with HSV-2 increases the rate of human immunodeficiency virus (HIV) transmission in coinfected individuals. DNA replication inhibitors are typically used to treat herpesvirus infections.

Multi-Photon Microscopy System Configured for Multiview Non-Linear Optical Imaging

This invention is a microscopy device and system for multi-photon microscopy utilizing multi-view nonlinear optical imaging. Nonlinear optical imaging remains the premier technique for deep-tissue imaging in which typically a multi photon arrangement may be used to illuminate and excite a sample. However, the penetration depth, signal-to-noise ratio, and resolution of this technique is ultimately limited by scattering. The present system addresses these issues by sequential excitation of a sample through three or more objective lenses oriented at different axes intersecting the sample.

Polyvalent Influenza Virus-Like Particles (VLPs) and Use as Vaccines

Influenza virus is a major public health concern, causing up to 500,000 deaths annually. The current strategy of reformulating vaccines annually against dominant circulating strains leads to variable protective efficacy and is unlikely to protect against novel influenza viruses with pandemic potential. Thus, there is a great need for a vaccine that provides “universal” protection against influenza viruses.