AAV5 Vector for Transducing Brain Cells and Lung Cells

The invention described and claimed in this patent application is related to the delivery of heterologous nucleic acids or genes to particular target cells. In particular, the application relates to methods of delivering a heterologous nucleic acid or gene of interest to particular target cells using an Adeno-Associated Virus of serotype 5 (AAV5). The particular target cells identified include the alveolar cells of the lung and cerebellar and ependymal cells of the brain.

Method for Inducing T-Cell Proliferation

This technology relates to the use of thymic stromal lymphopoietin (TSLP) to induce CD4+ T cell proliferation. This proliferation could be of particular relevance for patients in whom this cell population has been significantly reduced by HIV/AIDS or other conditions resulting in immunodeficiency. The proliferation of isolated CD4+ T cells can be induced through direct contact with TSLP or a nucleic acid encoding TSLP.

AAV5 Vector and Uses Thereof

The invention described and claimed in this patent application provides for novel vectors and viral particles which comprise adeno-associated virus serotype 5 (AAV5). AAV5 is a single-stranded DNA virus of either plus or minus polarity which, like other AAV serotypes (e.g., AAV4, AAV2) requires a helper virus for replication. AAV type 2 has the interesting and potentially useful ability to integrate into human chromosome 19 q 13.3-q ter. This activity is dependent on the non-structural, Rep, proteins of AAV2.

Parvovirus B19 Receptor And Parvovirus B19 Detection

The claimed invention provides a method of detecting the presence of a parvovirus in a sample. Parvoviruses infect animals and man. In man, the only known pathogenic member of this family is parvovirus B19. The inventors have identified the parvovirus B19 receptor which provides for a method to diagnose, prevent, and treat parvovirus infection utilizing the binding affinity for the receptor.

Active MRI Compatible and Visible iMRI Catheter

MRI is a promising imaging modality that provides superior soft tissue contrast and multi planar real-time imaging without harmful ionizing radiation for therapeutic procedures. Interventional magnetic resonance imaging (iMRI) has gained important popularity in many fields such as interventional cardiology and radiology, owing to the development of minimally invasive techniques and visible catheters under MRI for conducting MRI-guided procedures and therapies.

MRI Coil Having Inductively Coupled And Individually Tuned Elements Arranged As Free-Pivoting Components

This application describes an MRI probe/transmitter coil that is composed of concentric cylinders with resonant elements. The probe/transmitter can be tuned using a plurality of freely rotating resonant elements radially mounted between the two cylinders. This invention reduces the effects of subject characteristic variations on the coil resonant frequency in an MRI system. Further, this apparatus increases the sensitivity and efficiency in the magnetic resonance system by raising the Q factor of the probe coil/transmitter.

Live Tissue Imaging Gel

The National Heart Lung and Blood Institute (NHLBI), Laboratory of Cardiac Energetics, has created a gel with 0.3%-0.5% carbomer 940 which is easily used as an imaging immersion medium for confocal and two photon fluorescence emission microscopy and second harmonic generation imaging. This thick, but transparent, gel can be layered on tissue for microscopic analysis and retain the connection between the objective and tissue at a large working distance without supplementary retention.

A Novel MRI Adiabatic T<sub>2</sub> Preparation Sequence with Reduced B1 Sensitivity

This invention relates to a novel magnetic resonance angiography (MRA) method that accomplishes uniform contrast enhancement between coronary arteries and the surrounding tissue across the entire imaging volume. The disclosed technique utilizes an adiabatic refocusing transverse relaxation time (T2)-preparation pulse sequence, in which the magnetization is tipped into the transverse plane with a hard radio-frequency (RF) pulse and refocused using a pair of adiabatic fast-passage RF pulses. The isochromats are subsequently returned to the longitudinal axis using a hard RF pulse.