Isotopes of Alpha Ketoglutarate and Related Compounds for Hyperpolarized MRI Imaging

This technology includes 1-13C-ketoglutarate which can be used for imaging the conversion to hydroxyglutarate (HG) or Gln in cancer cells with an IDH1 mutations by hyperpolarized MRI. The ability to detect the status of IDH1 mutations is clinically prognostic for multiple cancers. These exciting observations are limited by two factors, the major one being that the natural abundance of 13C at position C5 overlaps with 1-13C-2-hydroxyglutarate peak, which limits the sensitivity of analysis and prevents simultaneous observations of HG and Gln formation.

Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).

This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.

Genetic Manipulation of Natural Killer Cells to Express c-MPL Growth Factor Receptor as a Therapy for Cancer

This technology includes genetic manipulation of natural killer (NK) cells to express thrombopoietin receptor (c-MPL) growth factor receptor as strategy to augment NK cell proliferation and anti-tumor immunity. Many investigational adoptive immunotherapy regimens utilizing NK cells require the administration of IL-2 or IL-15 cytokines to support the survival and function of the cells in patients, however administration of these cytokines causes a number of serious dose-dependent toxicities.

Blocking CD38 using Daratumumab F(ab)2 to Protect Natural Killer Cells from Daratumumab-induced Apoptosis and Cell Death for the Treatment of Multiple Myeloma

This technology includes the method of blocking CD38 in expanded natural killer (NK) cell therapy in combination with daratumumab in patients with multiple myeloma. Our in vitro studies have already confirmed the addition of NK cells to myeloma cells that have been exposed to daratumumab enhances myeloma killing compared to single agent treatment.

High Relaxivity Mulitivalent Gadolinium on a Peptide Scaffold for Targeted MRI Applications in Disease Diagnosis

This technology includes a peptide containing alternating Alanine and Lys(DOTA-Gd) residues can be used to increase the MRI relaxivity of a peptide. The low molecular weight construct can be appended to proteins, antibodies and peptides to increase MRI signals. This approach offers advantages over previous dendrimeric constructs.

Fluorogen-binding RNA Aptamers for Imaging and Analysis of RNA

This technology includes a number of RNAs that can induce strong fluorescence of otherwise non-fluorescent small molecules to be used for imaging and analysis of RNA. These RNAs have many potential applications as tags for live-cell imaging of cellular RNAs, as well as reporters for in vitro diagnostics. The "Mango" family of fluorescent RNA-fluorophore complexes has been previously reported.

Novel Bicuspid Transcatheter Heart Valve Frame and Leaflets for Mitro Valve Implantation

This technology includes a pair of subsystems for a novel transcatheter bicuspid valve (frame and leaflets) intended for implantation in the mitral position. It is simple, it overcomes key limitations to transcatheter bicuspid mitral valve implants, and it overcomes key limitations to transcatheter tricuspid mitral valve implants.

Encapsulation of Fluorescent Nanodiamonds into Poly-dopamine (PDA) Shell and Further Covalent Functionalization of the PDA Shell for Diagnostic Imaging Applications

This technology includes a new class of nanoparticles in the carbon family, fluorescent nanodiamonds (FNDs), exhibiting superb physical and chemical properties for diagnostic imaging applications. We have developed a simple, fast, and robust method to encapsulate FNDs in polydopamine that can be further functionalized. By integrating anatomical and molecular based imaging capabilities, multimodal nanoparticle probes are becoming important in the paradigm shift from conventional to future imaging technologies.

Single cell profiling of chromatin Occupancy and RNAs Sequencing (scPCOR-seq)

Cell-to-cell heterogeneity in gene expression is a widespread phenomenon, and may play important roles in cellular differentiation, function and disease development. Human Cell Atlas aims to profile gene expression in every single human cells. Recent studies have implicated a potential role of chromatin in the heterogeneity in gene expression. Understanding the mechanisms of cellular heterogeneity requires simultaneous measurement of RNA and occupancy of histone modifications and transcription factors on chromatin due to their critical roles in transcriptional regulation.