Cell Lines that Constitutively Express High-Frequency KRAS and P53 Mutations and Human Leukocyte Antigens (HLAs)

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

BRAF is an oncogene that encodinges a serine-threonine kinase (B-Raf kinase) important in regulating cell growth and differentiation. Spontaneous mutations in the BRAF gene allow cells to continuously divide, leading to the development of cancer. A substitution of glutamic acid for valine at amino acid number 600 (designated V600E) accounts for 90% of BRAF mutations and is a driver of many cancers. The V600E mutation is present in ~3% of all cancer cases, representing a patient population of 540,000 patients per year.

Automatic System and Method for Tissue Sectioning, Staining, and Scanning

Computer and imaging technologies led to the development of digital pathology and the capture and storage of pathological specimens as digitally formatted images. The use of artificial intelligence (AI) in digital pathology, such as in three-dimensional (3D) reconstruction, requires analyses of high volumes of data. This results in increased demands for processing and acquisition of digital images of pathology samples. Increased usage cannot be met by the time-consuming, manual, and laborious methods currently used.

Neoantigen T Cell Therapy with Neoantigen Vaccination as a Combination Immunotherapy Against Cancer

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes autologous, antitumor T cells to attack tumors through recognition of tumor-specific mutations, or neoantigens. A major hurdle in the development of ACT is the exhausted phenotype exhibited by many neoantigen-specific T cells, which limits their efficacy and prevents a sustained immune response. 

Bacteriophage Based-Vaccine System

Vaccines have become one of the most important tools in the fight against cancers and infectious diseases. However, some vaccines have shown limitations due to their high cost and low immune responses. To overcome these limitations, bacteriophages were proposed for the development of more cost-effective, immunogenic vaccines. Phages have shown a strong ability to activate induced and adaptive immune systems. The genome of these viral particles can be engineered, and their surface proteins can be exploited for antigen display.

T-cell Receptor Targeting Human Papillomavirus-16 E6 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed. 

 

T-cell Receptor Targeting Human Papillomavirus-16 E7 Oncoprotein

Human papillomavirus (HPV) is a group of human viruses known to cause various malignancies. Of the group, HPV-16 is the most prevalent strain – an estimated 90% of adults have been exposed. HPV-16 is also the strain most commonly associated with malignancy, causing the vast majority of cervical, anal, vaginal, vulvar, and penile cancers. Currently, HPV-positive malignancies non-responsive to surgery or radiation are incurable and poorly palliated by existing systemic therapies. Thus, an alternative therapeutic approach for HPV-positive malignancies is needed. 

Biomarker Analysis Software for High-Throughput Diagnostic Multiplex Data

Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that are released from cells. EVs may contain proteins derived from their cells of origin with the potential as diagnostic biomarkers indicating the state of the cells when released. However, due to their small size (50-1000nm), the methods currently used to phenotype EVs have limited sensitivity and scale. A need exists for development of novel technologies improving EV detection and phenotyping.

Enhanced Antigen Reactivity of Immune Cells Expressing a Mutant Non-Signaling CD3 Zeta Chain

Immunotherapy is a cutting-edge new category of treatment that aims to harness and, in some cases, modify the patient’s own immune cells to improve their ability to cure diseases. It can be an effective approach for a variety of conditions, ranging from cancer to inflammatory diseases.  However, a number of obstacles to the overall success of immunotherapy still exist.  For example, reactivity against a target antigen can be attenuated or the lifespan of the “modified” immune cells can be too short.

Mouse Lines with Fluorescently Labelled Membrane Proteins Regulating Cellular Motility and Membrane Trafficking

Cell motility and membrane trafficking play important roles in regulating cell division, cell migration, cell death and autophagy. Impairment of these processes can result in enhanced cell proliferation and survival and increased migration and invasion leading to cancer. Several proteins involved in cell motility and membrane trafficking have been shown to be dysregulated in various cancers. There is therefore a need for development of animal models for studying the roles of these proteins in cancer and their responses to drug treatment in vivo.