Lentiviral Vectors with Dual Fluorescence/Luminescence Reporters

The National Cancer Institute’s Protein Expression Laboratory seeks parties to co-develop dual luminescent/fluorescent cancer biomarkers.

In research settings, visualization of  tumors or tumor cells is often done using either bioluminescence or fluorescence.  However, both of these methods have shortcomings: bioluminescence is not sensitive enough to sort individual tumor cells, and fluorescence cannot be used effectively to view internal tumors and is best used with surface tumors.

Polypeptides for Stimulation of Immune Response (Adjuvants)

HMGN polypeptides belong to the high mobility group (HMG) family of chromosomal binding peptides. HMGN polypeptides typically function inside the cell nucleus to bind to DNA and nucleosomes and regulate the transcription of various genes. HMGN polypeptides also can be released by peripheral blood mononuclear cells. However, the extracellular release of a HMGN polypeptide initiates activation of the immune system. Therefore, it has potential use as a biological therapeutic for stimulating an immune response.

Small Molecule Inhibitors of Lactate Dehydrogenase as an Anti-Cancer Therapy

This technology includes a novel pyrazole-based compound NCGC00274266 (MLS000714501) that inhibits LDH-A with an IC50 of approximately 20 µM with low efficacy that can be used as an anti-cancer therapeutic. Structure-activity relationship studies on this compound led to hydroxypryazole-based compounds and discovery that the hydroxypyrazole compound and related analogs demonstrated a strong metal-dependent activity.

Humanized Mouse Model to Study Mesothelin (MSLN) -targeted Cancer Therapeutics: Bl6/TPO Mice

Mesothelin (MSLN) is an antigen highly expressed in several human cancers including mesotheliomas, ovarian cancers and pancreatic cancers. As such, human MSLN (hMSLN) is a target for many anti-cancer drugs. Most therapeutics targeting hMSLN do not recognize the mouse isoform of MSLN (mMSLN) and therefore cannot be tested in mouse cancer models. 

Murine metastatic pancreatic adenocarcinoma cell lines

Researchers at the National Cancer Institute (NCI) have developed orthotopic allograft models for pancreatic cancer that utilize low passage primary pancreatic adenocarcinoma cells or tumor fragments implanted into the cancer-free pancreata of recipient syngeneic immunocompetent mice. Tumor development in these models is more synchronized, latency is substantially shortened, and tumors develop only in one location, as pre-determined by the choice of a site for cells/tumor fragment implantation.

A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.