Novel Biased Potent Opioid-Like Agonists as Improved Medications to Treat Chronic and Acute Pain

There are no analgesics to ameliorate chronic pain without adverse side-effects (e.g., respiratory depression, gastrointestinal effects, tolerance, dependence), thus forcing patients into a difficult choice of negative impacts on quality of life. Most of the analgesics used for chronic and acute pain are drugs such as oxycodone, morphine, oxymorphone, and codeine. All of these opioids have been subject to misuse; prescription drug abuse is a severe problem worldwide, causing high mortality and greatly increased emergency room visits.

Fibroblast Growth Factor Receptor 4 (FGFR4) Monoclonal Antibodies and Methods of Their Use

Several Fibroblast Growth Factor Receptor 4 (FGFR4) specific antibodies with binding affinity at the nanomolar range have been successfully developed at the Genetics Branch. These antibodies have been made into different formats of therapeutic including Antibody Drug Conjugate (ADC), Bispecific T cell engager (BiTE) ae well as Chimeric Antigen Receptor (CAR)-T cells.

Proof of principle experiments have shown that when treated with FGFR4 positive tumor cells:  

Fully Human Antibody Targeting Tumor Necrosis Factor Receptor Type 2 (TNFR2) for Cancer Immunotherapy

Tumor necrosis factor receptor type 2 (TNFR2)-expressing regulatory T cells (Tregs), present in the tumor microenvironment, play an important role in tumor immune evasion. TNFR2 plays a crucial role in stimulating the activation and proliferation of Tregs, a major checkpoint of antitumor immune responses. In addition to its expression on Tregs, TNFR2 is also known to be overexpressed on some types of tumors and the survival and growth of these tumor cells is promoted by ligands of TNFR2.

A Specialized Tissue Collection Device for the Preservation and Transportation of Needle Biopsies

The ability to hold and transport tissue, especially needle biopsies in a pre-defined and controlled environment is critical for the preservation of biopsy samples in downstream analytic applications. Currently, tissue specimens are placed in open containers with variable, poorly controlled solutions applied to them, often in less than sterile conditions.  Evaluation of the tissue by examination through a stereoscope or similar approaches to determine adequacy is limited and requires manipulation of the tissue that can further damage the tissue.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

Single domain CD4, HIV-1 Antibodies, and Fusion Proteins for treatment of HIV

Soluble forms of human CD4 (sCD4) inhibit HIV-1 entry into immune cells.  Different forms of sCD4 and their fusion proteins have been extensively studied in animal models and clinical trials as promising HIV-1 inhibitors. However, they have not been successful in clinical trials due to their transient efficacy.  sCD4 is also known to interact with class II major histocompatibility complex (MHCII) and, at low concentrations, could enhance HIV-1 infectivity. 

T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.

3D Vascularized Human Ocular Tissue for Cell Therapy and Drug Discovery

Degeneration of retinal tissues occurs in many ocular disorders resulting in the loss of vision. Dysfunction and/or loss of Retinal Pigment Epithelium Cells (RPE) and disruption of the associated blood retinal barrier (BRB) tissue structures are linked with many ocular diseases and conditions including: age-related macular degeneration (AMD), Best disease, and retinitis pigmentosa. Engineered tissue structures that are able to replicate the function of lost BRB structures may restore lost vision and provide insight into new treatments and mechanisms of the underlying conditions. 

Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes for the Treatment of Glaucoma

Glaucoma is one of the world’s leading causes of irreversible blindness. There is no cure and vision lost from glaucoma cannot be restored. Glaucoma is associated with fluid build-up in the eye resulting in an increased intraocular pressure (IOP). The pressure may cause damage to the optic nerve and lead to progressive degeneration of retinal ganglion cells (RGC) and vision loss. Currently, available treatments for glaucoma delay progression by reducing IOP, but no therapies exist to directly protect RGC from degradation and loss.