Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Glucocorticoid-induced TNFR Family-Related Receptor Ligand (GITRL) Antibodies for Diagnosis and Treatment of Immune System Disorders

This technology provides novel antibodies and methods for diagnostics and treatment of disorders arising from dysregulation of the immune system using antibodies directed against glucocorticoid-induced tumor necrosis factor receptor family-related receptor ligand (GITRL). Also available are hybridomas producing anti-mouse GITRL monoclonal antibodies (clone 5F1).

Derivatives of Docosahexaenoylethanolamide (DEA) for Neurogenesis

The invention pertains to derivatives of docosahexaenoylethanolamide (synaptamide or DEA) and their use in inducing neurogenesis, neurite growth, and/or synaptogenesis. As such, these DEA derivatives can be used as therapeutics for neurodegenerative diseases such as traumatic brain injury, spinal cord injury, peripheral nerve injury, stroke, multiple sclerosis, autism, Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis. The DEA derivatives of the invention have increased potency and hydrolysis resistance as compared to native DEA.

Background-Free Fluorescent Nanodiamond Imaging

Available for licensing and commercial development are intellectual property rights covering a method of imaging a biological specimen (e.g., human tissue) using fluorescent nanodiamonds implanted into the subject of interest, applying a magnetic field to said subject and producing a resultant image by a net juxtaposition of a second acquired image. This process suppresses the background and permits selective imaging of the nanodiamonds in the presence of background fluorescence that exceeds the signal from the nanodiamonds.

Highly Potent and Selective Deubiquitinating Enzyme Inhibitor

Available for licensing are inhibitors that target the USP1/ UAF1 deubiquitinating enzyme (DUB) complex. The FDA approval and commercial success of Velcade®, a small molecule proteasome inhibitor, has established the ubiquitin-proteasome system (UPS) as a valid target for anticancer treatment. However, proteasome inhibitors in general suffer from a narrow therapeutic index and acquired resistance. A promising alternative to proteasome inhibition has been to target the enzymes upstream of proteasome-mediated protein degradation, i.e.

Super-Resolution Fluorescence Enhanced Imaging using Bleaching/Blinking Assisted Localization Microscopy (BALM)

The invention relates to systems and methods for localization microscopy for superresolution imaging of fluorescent molecules. The method utilizes intrinsic bleaching/blinking properties of fluorophores in which superresolution is achieved by capturing successive images and subtracting from each either the subsequent image. The location of a single fluorescent molecule can be identified when the molecules either photobleach, blink off, or blink between successive images using a higher magnification lens to achieve a smaller pixel size.

Safer Attenuated Virus Vaccines with Missing or Diminished Latency of Infection

This technology describes recombinant viruses that have weakened ability to establish and/or maintain latency and their use as live vaccines. The viruses have one or more genetic mutations that allow for continued replication but that inhibit latency. The vaccine materials and methods for their construction are exemplified with the virus that causes chickenpox and whose latent infection results in shingles, a condition that affects up to an estimated 1 million people per year in the United States alone. Additionally, there are veterinary applications of this technology.

Rat Model for Alzheimer's Disease

The present invention is directed to a transgenic rat model of Alzheimer's Disease (AD) termed TgF344-19+/-. The invention rat overexpresses two human genes (APPswe and PS1deltaE9 genes), each of which are believed to be independent dominant causes of early-onset AD. The hemizygote exhibits major features of AD pathology (i.e., dense and diffuse amyloid plaques, neurofibrillary tangles, cerebral amyloid angiopathy, hyperphosphorylated tau, paired-helical filaments, Hirano bodies, granulovacuolar degeneration, cognitive impairment, and cortical neuronal loss).

Transgenic Mice with Constitutively Active M3 Muscarinic Receptor in Islet Beta Cells

Q490L point mutation was introduced into the rat M3 muscarinic receptor cDNA to confer persistent, constitutive (ligand-independent) activity. Expression of the M3 receptor mutant was placed under the control of a 650 bp fragment of the rat insulin promoter II (RIP II) to limit expression to the islet beta cell.