Small Molecule Ephrin (Eph) Tyrosine Kinase Inhibitors for the Treatment of Colorectal Cancer and Other Eph Growth-dependent Solid Tumors

Advanced colorectal carcinoma is currently incurable, and new therapies are urgently needed. Ephrin (Eph) receptors are a clinically relevant class of receptor tyrosine kinases. Related signaling pathways are associated with oncogenesis of a number of cancers. NCI investigators found that phosphotyrosine-dependent Eph receptor signaling sustains colorectal carcinoma cell survival, thereby uncovering a survival pathway active in colorectal carcinoma cells.

T cell tuning molecules that modify the immune response to cancer cells

Researchers at NIH/NICHD have identified approximately 200 proteins as candidate molecules (leads) that “fine tune” T cell receptor (TCR) signaling. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks partners to collaborate on in vitro studies to validate these potential immunomodulators and to conduct in vivo studies in a murine cancer model to determine the effects of ligands (e.g. antibodies) to the proteins to determine their effect on the immune response to cancer cells.

GTF2I Mutations as a Genetic Marker for Prognosis of Thymic Malignancies

Thymoma and thymic carcinomas are a rare and poorly understood group of malignancies.   Despite the growing number of biomarkers that are used for diagnosing and treating carcinomas in general, cancers of the thymus are still diagnosed, stratified and treated by a costly combination of histology, surgery and radiological procedures.  The lack of qualified biomarkers associated with thymomas and thymic carcinomas has also hampered the development of targeted therapies.

Devices for Improved Tissue Cryopreservation and Recovery

Problem: Cryopreservation is a process where living biological materials like cells, tissues, and cell therapies (which are susceptible to damage caused by unregulated chemical kinetics) are preserved by cooling to very low temperatures in the presence of specific cryopreservation media that protects the biological material from damage. In order to be used, the biological material ideally should be thawed in a controlled manner that minimizes damage and desirably brings the material back to a viable state.

Nanoparticle-hydrogel Composite for Nucleic Acid Molecule Delivery

Mesothelioma is an aggressive cancer covering anatomic surfaces (e.g. lining of the lungs, heart, abdomen, etc.) that resists multi-modality therapies. Regional recurrence of mesothelioma from residual tumor cells prevents long-term benefits after surgical resection. Furthermore, there is no clinical consensus on intracavitary adjuvants that are effective in extending the tumor reduction effect of surgery.

Sensitive and Economic RNA Virus Detection Using a Novel RNA Preparation Method

DNA or RNA-based diagnostic tests for infectious diseases are critical in modern medicine. The current gold standard for COVID-19 detection is testing SARS-CoV-2 viral RNA by quantitative reverse transcription Polymerase Chain Reaction (RT-qPCR). This method involves patient sample collection with a nasopharyngeal swab, storage of the swab in a universal transport medium during transport to testing site, RNA extraction, and analysis of the extracted RNA sample.

Calcium (Ca2+) Flux-Dependent Method to Detect and Isolate Tumor Reactive T Cell Receptors (TCRs)

T cells with T cell receptors (TCRs) for cancer-specific antigens are used for adoptive cell therapy (ACT), wherein a patient’s T cells are redirected against their own cancer. However, these isolated T cells may require further ex vivo manipulation to enhance their anti-tumor activity. The ex vivo manipulation of these T cells, or the selection of less functionally inert T cells, and genetic insertion of tumor specific TCRs may circumvent these limitations.