A Novel X-ray Grating to Enhance Phase Contrast Imaging

The present invention relates to improving x-ray phase contrast imaging. The invention discloses a novel grating interferometer for phase contrast imaging with hard x-rays that overcomes limitations in the level of sensitivity by utilizing the advantages of far-field interferometers. The novel design and fabrication process can easily acquire absolute and differential phase images of lightly absorbing samples.

A Current Amplifier for Local Coil Pre-amplification of NMR/MRI Signals

The magnetic resonance imaging (MRI) systems are used for a variety of imaging application. The present invention discloses an improving MRI device and method by amplifying signals received by resonant NMR coils of MRI systems. It utilizes positive feedback from low-noise Field-Effect Transistor to amplify the signal current that can be coupled out to receiving loops positioned externally without loss in sensitivity. Therefore, the NMR coil can be flexibly positioned near internal tissues and used to develop high-resolution images in highly invasive situations.

Resolution Enhancement for Light Sheet Microscopy Systems

The invention pertains to a technique for enhancing the resolution of images in light sheet microscopy by adding additional enhanced depth-of-focus optical arrangements and high numerical aperture objective lenses. The technique employs an arrangement of three objective lenses and a processor for combining captured images. The image composition utilizes the greater resolving power of the third high numerical aperture objective lens by imaging the light sheet and enhanced depth-of-focus arrangement resulting in improved overall resolution of the light sheet system.

Novel Codon-Optimized Gene Therapeutic for Methylmalonic Acidemia

Methylmalonic Acidemia (MMA) is a metabolic disorder characterized by increased acidity in the blood and tissues due to toxic accumulation of protein and fat by-products resulting in seizures, strokes, and chronic kidney failure. A significant portion of MMA cases stem from a deficiency in a key mitochondrial enzyme, methylmalonyl-CoA mutase (MUT), required to break down amino acids and lipids. Currently, there are no treatments for MMA and the disease is managed primarily with dietary restriction of amino acid precursors and liver-kidney transplantation in severe cases.

Microscopy System for Distinguishing Stimulated Emissions as a Means of Increasing Signal

The invention pertains to a system and method for distinguishing stimulated emissions as a means of enhancing signal strength of fluorescent markers in fluorescence microscopy applications. The system is arranged such that an excitation beam (e.g., laser beam) illuminates a sample along some axis exciting the fluorescent markers used in the sample. A second light beam, a stimulation beam, illuminates the sample along another axis, possibly the same as that of the excitation beam.

Ultra-sensitive Diagnostic Detects fg/mL-pg/mL Pathogen/Disease Protein by Visual Color Change

This technology is an ultra-sensitive colorimetric assay, based on an enzyme-catalyzed gold nanoparticle growth process, for detection of disease-associated proteins (biomarkers) and disease diagnosis. Current detection methods, such as ELISA immunoassays, measure concentrations above 0.1 ng/mL in a sample. PCR, although more sensitive than ELISA, requires expensive and specialized equipment and reagents, skilled labor, and complex analysis techniques. This assay detects fg/mL to pg/mL concentrations, allowing detection and diagnosis in the earliest stage of disease or infection.

Octopod (8-Pointed Star) Iron Oxide Nanoparticles Enhance MRI T2 Contrast

The octopod-shaped iron oxide nanoparticles of this technology significantly enhance contrast in MRI imaging compared to spherical superparamagnetic iron oxide nanoparticle T2 contrast agents. These octopod iron oxide nanoparticles show a transverse relaxivity that is over five times greater than comparable spherical agents. Because the unique octopod shape creates a greater effective radius than spherical agents, but maintains similar magnetization properties, the relaxation rate is improved. The improved relaxation rate greatly enhances the contrast of images.

T Cell-Based Adoptive Transfer Immunotherapy for Polyomavirus-Associated Pathologies

Available for licensing are methods to generate T cells responsive to multiple polyomaviruses. The resulting T cell populations could be useful in treating immunosuppressed individuals with polyomavirus infections or polyomavirus-associated pathologies such as Merkel cell carcinoma (MCC), polyomavirus-associated nephropathy (PVAN), hemorrhagic cystitis, progressive multifocal leukoencephalopathy (PML), and trichodysplasia spinulosa (TS). The methods could also be used to restore polyomavirus-specific immunity in immunocompromised individuals.