Mouse Embryo Culture Chamber and Imaging System and Methods of Use

The culture of mouse embryos ex utero and continuous monitoring and imaging of embryos as they develop have applications in drug testing, genetic studies, and basic research on embryonic development. However, the embryo culture systems currently available for post-implantation embryos include rolling bottle culture systems, which do not permit imaging of the developing embryos and do not support the long-term survival and development of embryos ex utero.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at 10-1000 µCi and higher.

A Specialized Tissue Collection Device for the Preservation and Transportation of Needle Biopsies

The ability to hold and transport tissue, especially needle biopsies in a pre-defined and controlled environment is critical for the preservation of biopsy samples in downstream analytic applications. Currently, tissue specimens are placed in open containers with variable, poorly controlled solutions applied to them, often in less than sterile conditions.  Evaluation of the tissue by examination through a stereoscope or similar approaches to determine adequacy is limited and requires manipulation of the tissue that can further damage the tissue.

Radiographic Marker for Portable Chest and Abdominal X-Rays

The NIH Clinical Center seeks parties interested to license a method and apparatus that can significantly improve the diagnostic performance of portable chest (CXR) and abdominal x-rays.  This device (see image below) quantifies angulation of a patient to provide for a better comparison of day-to-day improvement. Potential applications include portable chest and abdominal x-rays performed at patient's hospital bedside.

Development Status:

A Preclinical Model for Mutant Human EGFR-driven Lung Adenocarcinoma

Previously described epidermal growth factor receptor- (EGFR) driven tumor mouse models develop diffuse tumors, which are dissimilar to human lung tumor morphology and difficult to measure by CT and MRI scans. Scientists at the National Cancer Institute (NCI) have developed and characterized a genetically engineered mouse (GEM) model of human EGFR-driven tumor model (hEGFR-TL) that recapitulates the discrete lung tumor nodules similar to those found in human lung tumor morphology.

A Preclinical Orthotopic Model for Glioblastoma Multiforme that Represents Key Pathways Aberrant in Human Brain Cancer

Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Scientists at the National Cancer Institute (NCI) have developed and characterized an orthotopic genetically engineered mouse (GEM)-derived model of GBM that closely recapitulates various human GBM subtypes and is useful for preclinical evaluation of candidate therapeutics.

Methods of Predicting Patient Treatment Response and Resistance via Single-Cell Transcriptomics of Their Tumors

Tailoring the best treatments to cancer patients remains a highly important endeavor in the oncology field. However, personalized treatment courses are challenging to determine, and technologies or methods that can successfully be employed for precision oncology are lacking.

Bacteriophage Based-Vaccine System

Vaccines have become one of the most important tools in the fight against cancers and infectious diseases. However, some vaccines have shown limitations due to their high cost and low immune responses. To overcome these limitations, bacteriophages were proposed for the development of more cost-effective, immunogenic vaccines. Phages have shown a strong ability to activate induced and adaptive immune systems. The genome of these viral particles can be engineered, and their surface proteins can be exploited for antigen display.

Automatic System and Method for Tissue Sectioning, Staining, and Scanning

Computer and imaging technologies led to the development of digital pathology and the capture and storage of pathological specimens as digitally formatted images. The use of artificial intelligence (AI) in digital pathology, such as in three-dimensional (3D) reconstruction, requires analyses of high volumes of data. This results in increased demands for processing and acquisition of digital images of pathology samples. Increased usage cannot be met by the time-consuming, manual, and laborious methods currently used.

Automated Digital Pathology Device for High-Throughput Demand

Computer and imaging technologies led to the development of digital pathology and the capture and storage of pathological specimens as digitally formatted images. The use of artificial intelligence (AI) in digital pathology, such as in three-dimensional (3D) reconstruction, requires analyses of high volumes of data. This resulted in increased demands for processing and acquisition of digital images of pathology samples. Increased usage cannot be met by the time-consuming, manual, and laborious methods currently used.