Albumin Binding Immunomodulatory Compositions

The invention relates to molecules wherein Evan’s Blue dye is chemically conjugated to CpG Oligonucleotides that elicit anti-tumoral or infection fighting immunity. Evans Blue, a symmetric azo dye, has high binding affinity to albumin. Albumin binding ability of Evans blue is utilized with CpGs and tumor-specific antigens, in order to leverage endogenous albumin that increases the safety and the potency of molecular vaccines.

Enhanced Functionalization of Carbon Nanoparticles for Biomedical Applications

The invention pertains to methods of increasing the density of carboxylic acids on the surface of a carbon nanoparticle that can be functionalized with biologically relevant molecules, such as antibodies or peptides, for biomedical applications. Advantageously, the method could increase functionalization of a nanoparticle by at least about 1x107 functional groups/g of nanoparticle.

Hybrid Computer Tomography Scanning System

The invention relates to a combination hybrid computer tomography (CT) system that is particularly suited for elucidating stages in pulmonary diseases, notably cystic fibrosis and lung cancer. Improved visualization of lung parenchyma and the margins of lung cysts (non-invasive “virtual biopsy”) may provide sufficient detail to distinguish the types of cystic lesions such that the typical lung tissue pathologic biopsy would not be needed to make a diagnosis.

Real-time RT-PCR Assay for Rapid, Highly Sensitive and Specific Detection of Human Enterovirus D68 (EV-D68)

Human Enterovirus D68 (EV-D68) is a non-polio enterovirus that can cause mild to severe respiratory illness, especially in infants and children with asthma. Since its identification, every year EV-D68 has been detected sporadically throughout the world. The US experienced a nationwide outbreak of EV-D68 associated with a particularly severe respiratory illness from mid-August to early November 2014, with 1,153 confirmed cases in 49 states and the District of Columbia. Although various established detection methods are available for EV-D68, enteroviruses evolve rapidly.

Encapsulated Streptococcus Compositions and Methods for Pneumococcal Vaccine, Probiotic, and Diagnostic Assay Development

Streptococcus pneumoniae (S. pneumoniae) bacteria, or pneumococcus, can cause many types of illnesses. These range from ear and sinus infections to life-threatening conditions such as pneumonia, bloodstream infections, and meningitis. Pneumococci are surrounded by a polysaccharide capsule, which is thought to help it evade the immune system. Presently, over 90 known serotypes of S. pneumoniae have been identified, of which only a minority produce the majority of pneumococcal infections; a serotype is defined by a unique pneumococcal capsule structure.

Characterization and Comparison of LAD2 and LADR Mast Cell Lines: Insights into Mastocytosis and HIV Infection

LAD2 and LADR cell lines are invaluable tools in mast cell research, offering insights into mastocytosis and immune responses. Derived from CD34+ cells, LAD2 cells have been extensively used for over 18 years, while LADR cells, a newer variant, exhibit enhanced characteristics such as larger size, increased granulation, and faster doubling time. Both cell lines release granular contents upon FceRI aggregation and can be infected with various strains of HIV. LADR cells, in particular, show greater expression of certain surface receptors and mRNA compared to LAD2 cells.

Bispecific Antibody Targeting Anthrax Toxins and Capsule for Enhanced Biodefense

The technology focuses on the development of a tetravalent bispecific antibody effective against Bacillus anthracis, the bacterium responsible for anthrax. This antibody combines the specificities of two monoclonal antibodies (mAbs): one targeting anthrax protective antigen (PA) and the other targeting the bacterial capsule. The anti-PA mAb shows potent toxin-neutralizing activity, while the anti-capsule mAb efficiently kills anthrax bacteria.

A Key Advancement for Human Norovirus Research and Reverse Genetics

The HEK293T/T7 cell line is a novel development in virology research, particularly for studying human noroviruses. This cell line expresses the T7 RNA polymerase, a key enzyme used in reverse genetics systems. Unlike existing technologies, the HEK293T/T7 cell line offers the unique advantage of being able to produce functional T7 RNA polymerase, which is essential for driving transcription from T7 promoters.

A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.