Novel Antigen for Use as Vaccine Against Nematode Infection

This invention describes a new vaccine against Strongyoides stercoralis, which establishes a parasitic infection that affects an estimated 100-200 million people worldwide. The potential for fatal disease associated with S. stercoralis infection and the difficulty in treating hyperinfection underscores the need for prophylactic vaccines against the disease. This vaccine uses S. stercoralis immunoreactive antigen (SsIR); a novel antigen capable of providing 70-90 % protection for mice immunized with the antigen.

N-Methanocarba Adenosine Derivatives and Their Dendrimer Conjugates as A3 Receptor Agonists

This technology relates to specific (N)-methanocarba adenine nucleosides that have been developed and dendrimers that connect these compounds to create molecules with multiple targets. Dendrimers are essentially repeated molecular branches presenting the core receptor-binding molecules. The compounds synthesized function as agonists and antagonists of a receptor of the G-protein coupled receptor (GPCR) superfamily.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells.

Mouse Anti-Mouse CXCL9 (Mig) Monoclonal Antibodies

This technology describes monoclonal antibodies against mouse chemokine (C-X-C motif) ligand 9 (CXCL9), also known as Monokine induced by gamma interferon (Mig). CXCL9 is a secreted protein that functions to attract white cells and increased expression of CXCL9 has been linked to several diseases. The inventors at the NIH generated over 100 anti-mouse CXCL9 antibodies from a CLXL9/Mig knockout mouse and further characterized several antibodies to show neutralization of CXCL9.

Prevention and Treatment of Herpes Virus Infection by Inhibition of the JMJD2 Family of Histone Demethylases

Investigators at the NIH have discovered a potential means for preventing or treating a herpes virus infection by inhibiting the activity of the host cell’s histone demethylases. When herpesviruses enter a cell, they are inactivated by cellular defense mechanisms that wrap the viral genome in repressive chromatin structures. In order for viral replication to progress, the host’s own histone demethylases are recruited to the viral genome to reverse this repression.

Novel Therapeutic Compounds for Treatment of Cancer and Immune Disorders

The global market for cancer therapeutics is over $40 billion and is anticipated to continue to rise in the future. There remains a significant unmet need for therapeutics for cancers that affect blood, bone marrow, and lymph nodes and the immune system, such as leukemia, multiple myeloma, and lymphoma. The proteasome inhibitor bortezomib, which may prevent degradation of pro-apoptotic factors permitting activation of programmed cell death in neoplastic cells dependent upon suppression of pro-apoptotic pathways, has been a successful mode of treatment for such cancers.

Compounds That Treat Malaria and Prevent Malaria Transmission

Malaria is the single leading cause of death, especially among children, in the developing world. Malaria is caused by infection with parasites of the genus Plasmodium, transmitted by mosquitos. In addition to transmission, vital steps in the parasite lifecycle occur in the mosquito host. The invention offered for licensing relates to therapeutic compounds and related pharmaceutical compositions that can be used in the prevention and treatment of malaria infection.

Pyruvate Kinase M2 Activators for the Treatment of Cancer

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

Selective 12-Human Lipoxygenase Inhibitors for the Treatment of Diabetes and Clotting

This invention discloses small molecule inhibitors of human 12-lipoxygenase (12-hLO). 12-lipoxygenase expression, activation, and lipid metabolites have been implicated in type 1 and type 2 diabetes, cardiovascular disease, hypertension, Alzheimer’s, and Parkinson’s disease. The development of 12-hLO inhibitors may be a potent intracellular approach to decreasing the ability of platelets to form large clots in response to vessel injury or activation of the coagulation pathway.

Glucocerebrosidase Activators as a Treatment for Gaucher Disease

This technology is a collection of small molecule activators of a genetically defective version of the enzyme called glucocerebrosidase (GCase), which causes Gaucher disease. Gaucher disease is a rare disease affecting 1 in 40,000 babies born. Ashkenazi Jews of eastern European descent (about 1 in 800 live births) are at particular risk of carrying this genetic defect. It is caused by inherited genetic mutations in the gene that encodes GCase, which result in reduced activity of the enzyme.