Novel Method and Kit Using Monoclonal Antibodies for More Sensitive Detection of Dengue Virus

Following primary dengue virus (DENV) infection, non-structural protein 1 (NS1), a dengue-specific glycoprotein, is present in blood and is easily detected by various assays. However, for any infection thereafter (secondary infection), bioavailability of the glycoprotein greatly reduces sensitivity of DENV detection. Since secondary DENV infection is a risk factor for developing hemorrhagic fever, there is increasing need for more sensitive detection at this stage.

Mobile Instrumentation for the Detection and Sampling of Aerosol Particles

Hazardous airborne particles pose a risk for health and safety in a variety of environments and thus detection of these small particles is essential. Current particle magnification systems are bulky and require a lot of power for operation, making them unsuitable to easily detect and analyze small particles in mobile and personal settings.

Microscopy System for Distinguishing Stimulated Emissions as a Means of Increasing Signal

The invention pertains to a system and method for distinguishing stimulated emissions as a means of enhancing signal strength of fluorescent markers in fluorescence microscopy applications. The system is arranged such that an excitation beam (e.g., laser beam) illuminates a sample along some axis exciting the fluorescent markers used in the sample. A second light beam, a stimulation beam, illuminates the sample along another axis, possibly the same as that of the excitation beam.

Ultra-sensitive Diagnostic Detects fg/mL-pg/mL Pathogen/Disease Protein by Visual Color Change

This technology is an ultra-sensitive colorimetric assay, based on an enzyme-catalyzed gold nanoparticle growth process, for detection of disease-associated proteins (biomarkers) and disease diagnosis. Current detection methods, such as ELISA immunoassays, measure concentrations above 0.1 ng/mL in a sample. PCR, although more sensitive than ELISA, requires expensive and specialized equipment and reagents, skilled labor, and complex analysis techniques. This assay detects fg/mL to pg/mL concentrations, allowing detection and diagnosis in the earliest stage of disease or infection.

Octopod (8-Pointed Star) Iron Oxide Nanoparticles Enhance MRI T2 Contrast

The octopod-shaped iron oxide nanoparticles of this technology significantly enhance contrast in MRI imaging compared to spherical superparamagnetic iron oxide nanoparticle T2 contrast agents. These octopod iron oxide nanoparticles show a transverse relaxivity that is over five times greater than comparable spherical agents. Because the unique octopod shape creates a greater effective radius than spherical agents, but maintains similar magnetization properties, the relaxation rate is improved. The improved relaxation rate greatly enhances the contrast of images.

Highly Sensitive Tethered-Bead Immune Sandwich Assay

This technology is a highly sensitive tethered-bead immune sandwich assay. Analyte molecules are captured between two antibodies, a capture antibody and a detection antibody. The capture antibody on a micron-size bead binds analyte from a sample fluid. The bead-captured analyte is then exposed to a “detection” antibody that binds to the bead-captured analyte, forming a “sandwich”. The sandwiched analyte-bead complex then connects to a flexible polymer (such as DNA) anchored on a solid surface to form tethered particles.

Rapid Method for the Detection of Antigen-Specific Antibodies in Any Species

Currently available identification methods for antigen-specific antibodies require live pathogens, antisera (that are only available for a limited number of species), and species-specific secondary antibodies (also a limited resource). Thus, detection or surveillance of pathogens in wild avian species or zoo animals, for example, is complex and cumbersome.

Monoclonal Antibodies to the HIV-1 Core Protein p24

The core proteins of HIV-1 are secreted into the environment during replication in the human body. The detection of the core protein p24 (molecular mass of 24 kilodaltons) serves as an indicator of early HIV-1 infection, and assays detecting it have been available since the late 1980s. However, the development of a rapid assay for the detection of HIV-1 p24 has only recently become available.

Real-time RT-PCR assay for Detection of Live Attenuated Influenza Vaccine for A and B Viruses

Upon intranasal vaccination, live attenuated influenza vaccine (LAIV) viruses may replicate within the nose for several days. Current clinical diagnostic tests cannot distinguish between LAIV viruses and multiple influenza viruses in recently inoculated patients that present with respiratory symptoms. This poses a problem for the diagnosis and treatment of patients with respiratory symptoms, as these symptoms may not be caused by influenza. CDC researchers have developed a real-time RT-PCR assay to detect the presence of LAIV viruses.