Highly-sensitive and Dynamic Biomarkers for Intrathecal Inflammation for Neuroimmunological Diseases

The technology relates to the identification and validation of eight biomarkers for active central nervous system (CNS) intrathecal inflammation. The management of neuroimmunological diseases is severely hindered by an inability to reliably measure intrathecal inflammation. Current laboratory tests, that were developed over 40 years ago, do not capture low to moderate levels of CNS inflammation and provide limited information about its phenotype.

Development of a Rabbit Polyclonal Antibody for the pT707 Phosphorylated Site of Neuroligin-4 (NLHN4)

This technology includes the creation and use of a polyclonal antibody for Neuroligin-4, NLGN4, that was created by injecting a peptide surrounding the pT707 phosphorylation site into rabbits and affinity purifying the resulting serum. Neuroligin-4 is a member of the neuroligin family of cell adhesion proteins. This family has been shown to play a role in the maturation and function of the neuronal synapse and has been implicated in patients with autism and intellectual disability.

Diagnosing and Treating Collagen type VI-related Dystrophies Based on a New COL6A1 Mutation

This invention includes the identification of a new mutation in the collagen type VI (COL6A1) gene, including a method for diagnosing and treating patients with this mutation. Collagen type VI-related dystrophies (COL6-RD) are devastating neuromuscular disorders that manifest with progressive generalized muscle weakness, contractures, and respiratory failure. Currently, no cure exists for COL6-RD.

Nanobody Therapeutics for SARS-CoV2

This technology includes the design and use of several nanobodies that bind to the SARS-CoV2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) receptor. Nanobodies are 12-15 kDa single-domain antibody fragments that are more stable and easier to produce in large quantities compared to conventional antibodies. SARS-CoV2 is the virus responsible for the COVID19 pandemic. The SARS-CoV2 spike protein is responsible for viral entry into human cells via interaction with ACE2 on the cell surface.

Design of Switch-Mode Amplifier to Transform Single Transmit Hardware for Multi-Nuclear MRI

This technology includes the design and implementation for 1H-nuclear magnetic resonance imaging (MRI) that allows single transmit hardware to be "transformed" for another nucleus excitation to perform multi-nuclear MR. A radiofrequency (RF) optically controlled switch-mode amplifier prototype is tuned for excitation of two nuclei. The amplifier received the nuclei carrier signals optically through a single fiber.

Longer-lived Mouse Models for Studying Gaucher Disease

The invention is a novel longer-lived mouse model for Gaucher disease. Gaucher disease is a genetic disorder that results from deficiencies in the enzyme glucocerebrosidase (GBA). The use of animal models to study how the disease progresses has been invaluable in research of this disorder. However, existing mouse models have been limited due to early mortality because the GBA enzyme plays an important role in lysosomal storage.

Human Salivary Gland Cell Lines for Propagation of Enteric Viruses

Enteric viruses like norovirus, rotavirus and astrovirus mainly transmit through fecal-oral route by ingestion of contaminated food and water and productively replicate in the intestines. Recently, researchers at National Heart, Lung, and Blood Institute (NHLBI) and National Institute of Dental and Craniofacial Research (NIDCR) identified a second route of enteric viral transmission by demonstrating that these viruses also productively and persistently infect salivary glands, reaching titers comparable to that in intestines.

Cyclopentane-modified FIT-PNAs as Highly Emissive and Selective RNA/DNA Sensors for Use in Clinical Diagnostics

This technology includes Cyclopentane-modified Peptide Nucleic Acids (cp-PNAs) which can be combined with (forced-intercalation) FIT-PNAs to create highly sensitive probes that detect the presence of complementary RNA sequences. We have studied the beneficial effects of incorporating cyclopentane groups into the backbone of PNAs, which leads to proper preorganization of the PNA backbone into the conformations needed to bind complementary RNA sequences. The cp-PNAs typically have improved thermodynamic stability for binding to complementary nucleic acids compared to unmodified PNAs.