Selective 12-Human Lipoxygenase Inhibitors for the Treatment of Diabetes and Clotting

This invention discloses small molecule inhibitors of human 12-lipoxygenase (12-hLO). 12-lipoxygenase expression, activation, and lipid metabolites have been implicated in type 1 and type 2 diabetes, cardiovascular disease, hypertension, Alzheimer’s, and Parkinson’s disease. The development of 12-hLO inhibitors may be a potent intracellular approach to decreasing the ability of platelets to form large clots in response to vessel injury or activation of the coagulation pathway.

Modulation of Leucine-rich Repeats and Calponin Homology Domain-containing Protein 4 (Lrch4) Activity for Therapeutic Applications

NIH Inventors have recently discovered a novel Leucine-rich repeat and calponin homology domain-containing protein 4 (Lrch4) in a proteomic screen of the plasma membrane of lipopolysaccharide (LPS)-exposed macrophages. Expression data by RT-PCR revealed that all Lrch family members (1-4) are expressed in macrophages, but only Lrch4 was recruited into lipid rafts (signaling microdomains of the plasma membrane) by LPS. Lrch4 is the most highly expressed Lrch family member in mouse tissues. It is a predicted single-spanning transmembrane protein that is encoded by the Lrch4 gene in humans.

Improved Standard for Immune System Recovery Assay

Monitoring an immune system that has been depleted by infection (e.g., HIV), chemotherapy, or progenitor cell transplantation is vital to assessing individual’s recovery status. This technology provides a new plasmid standard to be used as part of the existing TREC assay. This new plasmid has a shorter insert than the commercially available one, which means it now matches the PCR product generated in the qPCR reaction in the TREC assay. Additionally, the new plasmid is easier to grow up than the existing standard.

Glucocerebrosidase Activators as a Treatment for Gaucher Disease

This technology is a collection of small molecule activators of a genetically defective version of the enzyme called glucocerebrosidase (GCase), which causes Gaucher disease. Gaucher disease is a rare disease affecting 1 in 40,000 babies born. Ashkenazi Jews of eastern European descent (about 1 in 800 live births) are at particular risk of carrying this genetic defect. It is caused by inherited genetic mutations in the gene that encodes GCase, which result in reduced activity of the enzyme.

Mouse Model for Cerebral Cavernous Malformation, an Inherited Brain Disorder

Cerebral Cavernous Malformation (CCM) is a brain disease affecting up to 0.5% of the worldwide population. CCM is characterized by grossly dilated vessels prone to leaking and hemorrhage which result in severe headaches, seizures, and strokes. Inherited forms of the disease are due to mutations in one of three loci, CCM1, CCM2, and CCM3. Prior efforts to develop mice with targeted null mutations in Ccm1, Ccm2, or Ccm3 have been unsuccessful, as such mutations result in embryonic death.

Novel Small Molecule Inhibitors for the Treatment of Huntington’s Disease

This technology is a collection of small molecules screened for their ability to prevent or reduce the cytotoxic effects of the protein, Huntingtin. Huntington's disease is a neurodegenerative disorder due to a dominantly acting expansion of a CAG trinucleotide repeat in exon 1 of the Huntington (HTT) gene resulting in production of the altered (mutant) protein Huntingtin, which has a long chain of polyglutamine (poly Q) attached to the exon 1 encoded protein sequence.

Multivalent Vaccines for Rabies Virus and Filoviruses

No vaccine candidates against Ebola virus (EBOV) or Marburg virus (MARV) are nearing licensure and the need to develop a safe and efficacious vaccine against filoviruses continues. Whereas several preclinical vaccine candidates against EBOV or MARV exist, their further development is a major challenge based on safety concerns, pre-existing vector immunity, and issues such as manufacturing, dosage, and marketability. The inventors have developed a new platform based on live or chemically inactivated (killed) rabies virus (RABV) virions containing EBOV glycoprotein (GP) in their envelope.

An In-Vitro Cell System Useful For Identification of RORgamma Antagonists

The retinoid-related orphan receptors alpha, beta and gamma (RORalpha, beta and gamma , also referred to as NR1F1, 2 and 3, respectively) comprise a distinct subfamily of nuclear receptors. Study of ROR-deficient mice has implicated RORs in the regulation of a number of biological processes and revealed potential roles for these proteins in several pathologies. NIH investigators have developed an in-vitro system using CHO cells stably expressing a TET-On expression vector regulating RORgamma and a RORE-Luciferase reporter.

Conditionally Immortalized Human Podocyte Cell Lines

Podocytes, cells of the visceral epithelium in the kidneys, are a key component of the glomerular filtration barrier. Podocyte damage and loss contribute to the initiation of glomerular diseases. NIH investigators recently established long-term urinary cell cultures from two patients with focal segmental glomerulosclerosis and two healthy volunteers, via transformation with the thermosensitive SV40 large T antigen (U19tsA58) together with human telomerase (hTERT).

Monoclonal Antibodies Against Poliovirus

Early work by Hammond at al. showed gamma globulin to be effective for the prevention of poliomyelitis. Therefore, passive immunotherapy could be another way to treat chronic excretors. Even though prior attempts to use intravenous immunoglobulin (IVIG) and breast milk were unsuccessful, there is reason to think that higher doses of antipoliovirus antibodies could result in complete clearance of poliovirus from chronically infected individuals.