Monoclonal Antibodies for Detection of Rabies Virus Antigen and Confirmatory Rabies Diagnosis

According to the World Health Organization (WHO), rabies causes greater than 59,000 deaths every year in over 150 countries as of 2017. A rapid and reliable diagnostic test for rabies is critical for prophylaxis considerations in humans bitten by animals as well as for basic surveillance and animal rabies control programs. The World Organization of Animal Health (OIE) and WHO Expert Committee on Rabies recently approved the direct rapid immunohistochemical test (DRIT) for rabies diagnostics.

A Mood-Machine-Interface as an Intervention for Emotional Self-Regulation in Real-Time

This technology relates to a closed-loop controller that is being developed as a phone app for emotional self-regulation in real-time. There is a significant association between emotion dysregulation and symptoms of depression, anxiety, eating pathology, and substance abuse, affecting millions worldwide. Consisting of a closed-loop controller that adjusts reward values in real-time according to individual mood response, the Mood Machine Interface technology compensates for adaptation to stimuli over time allowing it to generate substantial mood changes in the user.

Methods and Systems for Evaporation of Solvents and Solid Phase Extraction

There is an acute deficit in chemical synthesis with respect to benchtop tools that are specifically designed to address the capability and efficiency of certain key aspects of chemical synthesis, namely reaction preparation, product isolation, and solvent removal. Chemical research currently relies upon a variety of devices that function in a manner that is disconnected, as well as difficult to integrate and automate; collectively, these device challenges hinder the efficient isolation and purification of desired chemical synthesis products.

Real-time Cellular Thermal Shift Assay and Analysis (RT-CETSA) for Research and Drug Discovery

Scientists at NCATS have developed a novel Cellular Thermal Shift Assay (CETSA), named “Real-time CETSA” in which temperature-induced aggregation of proteins can be monitored in cells in real time across a range of compound concentrations and simultaneously across a temperature gradient in a high-throughput manner. Real-time CETSA streamlines the thermal shift assay and allows investigators to capture full aggregation profiles for every sample.

Quantum Dot Conjugated Virus Spike Protein for Cell-based Bio-sensing Systems and Drug Screening for the Prevention of Viral Infections

This technology includes a method to facilitate identification of drug targets that can prevent SARS-related viruses from entering human cells with ACE2 receptors on the plasma membrane. Surface binding to cellular ACE2 of the SARS-CoV-2 virus is the first step of infection for the disease COVID-19. The invention allows for visualization of cell binding and entry of a “quantum dot conjugated virus spike protein” (hereafter referred to as either a ‘QD-Spike conjugate’ or a ‘pseudo-virion’) and can be used to screen libraries of drugs that prevent/inhibit this cell entry.

Sensor and Device for Real-Time Discovery of Metabolites in Blood for Disease Detection, Monitoring and Control

This technology includes device and sensor selection for the detection of blood metabolites which can be used to diagnose and monitor diseases in real-time. Currently the monitoring of metabolite levels is performed with specialized mass spectrometry instrumentation, therefore patient quality-of-life and financial advantages exist to develop devices capable of detecting metabolites in real-time.

A Method for the Measurement of Cellular FMRP Levels for High Throughput Screening and Diagnosis of Fragile X Syndrome

This technology includes a precise measurement assay of cellular FMRP levels in patients, which can assist in the diagnosis and assess the severity of Fragile X syndrome (FXS). FXS is an X-linked disorder that produces intellectual disability, cognitive impairment, epilepsy, depression and anxiety. FXS is caused by mutations in the Fragile X Mental Retardation-1 (FMR1) gene that result in the absence or a loss of function of its protein product, FMRP.

Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

The NCGC BioPlanet: A Computational Algorithm to Display Networks in Three Dimensions

This technology includes a novel computational algorithm and software implementation to map and display biological pathways and their relationship on the surface of a globe in a three-dimensional space. Currently, biological pathways and genes are represented as two-dimensional networks, which is not effective for displaying complicated relationships between pathways and genes.

SARS-CoV-2 Neutralizing Antibodies and Synthetic Nanobody Library Using a Humanized Llama Framework Region

NCATS has developed a highly diverse synthetic library that will allow for the rapid identification of novel nanobodies that bind to a wide arrange of target antigens. The humanized framework used to construct the library will facilitate the transition of lead candidates into patient studies. Several highly potent SARS-CoV-2 nanobodies (antibodies) have been identified and are available for further development.

NCATS is actively seeking licensing for the 1) a synthetic library and 2) the potent neutralizing antibodies with activity against SARS-CoV-2.