Genome Wide DNase I Hypersensitive Sites Detection in Formalin-Fixed Paraffin-Embedded Single Cells
Vitamin D Receptor Antagonists for Treating Breast Cancer
Retinoids Can Increase the Potency of Anti-Cancer Immunotoxins
Methods of Screening for Risk of Cancer Using Human Lactoferrin DNA Probe or Primer
Methods and Materials for Controlling Stem Cell and Cancer Cell Proliferation and Differentiation
Efficacious Fluorinated Cytidine Analog Cancer Therapeutic With Low Toxicity In Animal Studies
Cytidine analogs remain an area of active drug discovery and development, with five FDA approved drugs for the treatment of acute myeloid leukemia (AML). Two of these drugs, azacitidine (Vidaza®) and decitabine (Dacogen®), which were approved for myelodysplastic syndromes in 2004 and 2006, respectively, inhibit the DNA maintenance methyltransferase DNMT1. Because of the general toxicity of azacitidines, other nucleoside analogs are favored as therapeutics.
T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy
The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.
Micro-Dose Calibrator for Pre-clinical Radiotracer Assays
Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at 10-1000 µCi and higher.
Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells
Hematopoietic and pluripotent stem cells can be differentiated into T cells with potential clinical utility. Current approaches for in vitro T cell production rely on Notch signaling and artificial mimicry of thymic selection. However, these approaches result in unconventional or phenotypically aberrant T cells; which may lead to unpredictable behavior in clinical use. Thus, there exists a need for improved methods of generating conventional T cells in vitro from stem cells.