Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease

This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

A Neural Stem Line from a Niemann Pick C (NPC) Type 1 Patient for Therapy Development

This technology includes a neural stem cell (NSC) line derived from a Niemann Pick C (NPC) patient, aimed at advancing research and drug development for NPC, an inherited neurodegenerative disorder characterized by the accumulation of cholesterol in neurons. The NSCs, which serve as a crucial intermediate cell type, can be differentiated into any neuronal or glial cell of the brain or spinal cord under appropriate culture conditions. These cells originate from fibroblasts reprogrammed into induced pluripotent stem cells.

Cytochrome P450 CYP2J Polyclonal Antibodies and Recombinant Proteins for Immunoblotting and Metabolism Studies

This technology includes identified members of the mouse cytochromes P450 CYP2J subfamily and antibodies to them for P450 expression studies and metabolism research. Recombinant proteins of the CYP2J subfamily members have also been expressed. The CYP2J subfamily members have a wide tissue distribution and may be useful as model systems for studies of cardiovascular disease, drug metabolism, and toxicity.

Mouse Model of Pompe Disease for Therapy Discovery

This technology includes a mouse model of Pompe disease, created by targeted inactivation of the acid alpha-glucosidase gene, to test novel therapies. Pompe disease is a severe muscle disorder that affects people at any age. It is a rare genetic disease caused by a deficiency of a lysosomal enzyme acid alpha-glucosidase. The enzyme degrades glycogen to glucose in the lysosomes. The deficiency leads to accumulation of glycogen in multiple organs, but cardiac and skeletal muscles are most severely affected.

Discovery of Novel SHT (SHT6) Compounds for the Treatment of Central Nervous System-related Diseases

This technology includes novel compounds which can be expected to selectively target the 5HT6 receptor, which is implicated in CNS-related diseases. In particular 5HT6 antagonism has been implicated in cognitive impairment, AD/PD and drug abuse/alcohol abuse related disorders. 5HT6 compounds have also shown to reduce appetite and induce weight loss. As such, compounds that can selectively antagonize 5HT6 along with an additional signaling pathway implicated in such diseases like inducible nitric oxide synthase (iNOS) may be valuable for such CNS mediated diseases.

Vitamin C renal leak as a clinical diagnostic tool in the detection, monitoring, and management of acute and chronic diseases

This technology includes a clinical diagnostic tool for measuring vitamin C elimination by human kidneys that can be used for detecting, monitoring, and managing acute and chronic diseases. Findings revealed significant associations between vitamin C renal leak status and clinical variables affecting renal function and blood glucose. The technology uses vitamin C depletion-repletion kinetics and pharmacokinetic models to establish a physiological vitamin C renal threshold.

P2Y14 Receptor Antagonists for the Treatment of Inflammatory Diseases, Including Pulmonary and Renal Conditions and Chronic Pain

This technology includes the development of selective P2Y14R antagonists for the treatment of asthma, sterile inflammation of the kidney, diabetes, and neurodegeneration. The P2Y14 receptor (P2Y14R) is a target for the treatment of inflammatory diseases, including pulmonary and renal conditions. Selective P2Y14R antagonists have demonstrated efficacy in animal models of asthma, pain, diabetes, and acute kidney injury. However, the prototypical antagonist is not optimal for in vivo administration, as it displays a low oral bioavailability.