P2Y14 Receptor Antagonists Containing A Biaryl Core

The technology discloses composition of compounds that fully antagonize the human P2Y14 receptor, with moderate affinity with insignificant antagonism of other P2Y receptors. Therefore, they are highly selective P2Y14 receptor antagonists. Even though there is no P2Y14 receptor modulators in clinical use currently, selective P2Y14 receptor antagonists are sought as potential therapeutic treatments for asthma, cystic fibrosis, inflammation and possibly diabetes and neurodegeneration.

Novel Activators of Pyruvate Kinase for the Treatment of Hemolytic Anemias

This technology includes the development and use of small molecule activators of pyruvate kinase (PK) for the treatment of inherited nonspherocytic hemolytic anemia, including PK deficiency. PK deficiency is caused by an inherited deficiency in an enzyme that reduces the lifespan of red blood cells. More than 150 unique mutations have been identified in the PK gene that lead to decreased activity in this essential enzyme in the glycolytic pathway. The prematurely lysed red blood cells can lead to jaundice, splenomegaly, and a hemolytic anemia.

Combination Therapy of Human Recombinant N-acetylgalactosamine-6-sulfate sulfatase (hrGALNS) and Chaperones for the Treatment of Mucopolysaccharidosis Type IVA

This technology includes the identification and use of a combination therapy consisting of human recombinant N-acetylgalactosamine-6-sulfate sulfatase (hrGALNS) and the pharmacological chaperone compounds Ezetimibe and Pranlukast for the treatment of Mucopolysaccharidosis Type IVA (MPS IVA). MPS IVA is a rare disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Currently, hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) are available for patients with MPS IVA.

Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents

Homocystinuria (HCU), a group of inherited disorders, causes symptoms ranging from failure to thrive and developmental delays in infants or young children to abnormal blood clots with onset in adults.1 Approximately 1 in 200,000 to 335,000 people have HCU globally.2

Oral Treatment of Hemophilia

This invention portrays a simple method for treatment of antigen-deficiency diseases by orally administering to a subject a therapeutically effective amount of the deficient antigen, wherein the antigen is not present in a liposome. This method increases hemostasis in a subject having hemophilia A or B, by orally administering to the hemophiliac a therapeutically effective amount of the appropriate clotting factor, sufficient to induce oral tolerance and supply exogenous clotting factor to the subject.

Substrate Reduction Therapy for Smith-Lemli-Opitz Syndrome and Related Disorders

Smith-Lemli-Opitz Syndrome (SLOS) is a rare autosomal recessive genetic disorder affecting the final step of cholesterol biosynthesis. SLOS is characterized by slow growth before and after birth, mental retardation, and multiple congenital disabilities. There is no FDA approved treatment for SLOS. Patients may benefit moderately from palliative care through an increase in dietary cholesterol to compensate for the endogenous block in cholesterol biosynthesis.

Improved Gene Therapy Vectors for the Treatment of Glycogen Storage Disease Type Ia (GSD-1a)

GSD-Ia is an inherited disorder of metabolism associated with life-threatening hypoglycemia, hepatic malignancy, and renal failure caused by the deficiency of glucose-6-phosphatase-alpha (G6Pase-alpha or G6PC). Current therapy, which primarily consists of dietary modification, fails to prevent long-term complications in many patients, including growth failure, gout, pulmonary hypertension, renal dysfunction, osteoporosis, and hepatocellular adenomas (HCA).

Recombinant Virus Vectors for the Treatment of Glycogen Storage Disease type Ib (GSD-Ib)

Glycogen storage disease type Ib (GSD-Ib) is an autosomal recessive disorder caused by deficiencies in glucose-6-phosphate transporter (G6PT), a ubiquitously expressed endoplasmic reticulum (ER) protein that translocates G6P from the cytoplasm into the ER lumen.  Inside the ER, G6P is hydrolyzed to glucose and phosphate by either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α or G6PC) or the ubiquitously expressed G6Pase-β.  G6PT and G6Pase are functionally co-dependent and form the G6PT/G6Pase complexes.