Nucleic Acid-based Differentiation and Identification of Medically Important Fungi

This invention, entailsnucleic acid-based assays, for detecting the presence of pathogenic fungi such as Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Pneumocystis brasiliensis, and/or Penicillium marneffei within a sample. Within a healthcare setting, this particular approach can greatly reduce pathogen identification time, better direct treatments and ultimately improve patient outcomes.

Nucleic Acid Assays for the Detection and Discrimination of Aspergillus Fungi Species within Biological Samples

This invention relates to assays for the detection and species-specific identification of Aspergillus fungi. Accurate clinical diagnosis of Aspergillus species has become increasingly important as certain species, such as A. terreus and A. fumigatus, are resistant to specific commonly employed antifungal compounds. Most contemporary fungal diagnostic methods are time-consuming and inaccurate.

Nucleic Acid-based Compositions and Methods for the Detection of Pathogenic Candida or Aspergillus Fungi Species

This invention pertains to the development of oligonucleotides for the rapid nucleic acid-based identification of Candida or Aspergillus fungi species in biological samples. This identification is accomplished by the targeting the internally transcribed spacer-2 (ITS2) region that are unique to various Candida species. The assay is sensitive, specific and rapid. Implementation of the technology will facilitate earlier specific diagnoses, and lead to better antifungal therapy implementation for infected patients.

Nucleic Acid-based Compositions and Methods for the Species-Specific Detection of Pathogenic Candida Fungi

This invention pertains to the development of oligonucleotides for the rapid nucleic acid-based identification of the Candida fungi species C. haemulonii, C. kefyr, C. lambica, C. lusitaniae, C. norvegensis, C. norvegica, C. rugosa, C. utilis, C. viswanathii, C. zeylanoides, C. dubliniensis, and C. pelliculosa within biological samples. This identification is accomplished by the targeting the internally transcribed spacer-2 (ITS2) region that are specific for each species.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

A Simple Colorimetric Assay for Anti-malarial Drugs Quality Assurance and Rapid, On-site Counterfeit Detection

This CDC assay aims to lessen the anti-malarial drug counterfeiting epidemic by testing for the artemisinin-type drugs (the active compound), through the use of a simple, inexpensive colorimetric test. Poor quality and counterfeit drugs pose an immediate threat to public health and undermine malaria control efforts, resulting in resistant-parasites and invalidates effective compounds, i.e.

Recombinant Polypeptides for Clinical Detection of Taenia solium and Diagnosis of Cysticercosis

CDC scientists have developed synthetic/recombinant polypeptides that can be used for the creation of inexpensive, high-quality cysticercosis diagnostic assays. Taenia solium is a species of pathogenic tapeworm. Intestinal infection with this parasite is referred to as taeniasis and it is acquired by ingestion of T. solium cysticerci found in raw and undercooked pork, or food contaminated with human or porcine excrement. Many infections are asymptomatic, but infection may be characterized by insomnia, anorexia, abdominal pain and weight loss.

Portable Laser-Operated Counterfeit Drug Identifier (CoDI) for Tablets

Counterfeit drugs (also known as “fake or falsified medicines”) have become a major world-wide public health concern. Falsified medicines may contain toxic substances, the wrong active ingredients, suboptimal amounts of active ingredients, or no active ingredients at all. CDC researchers developed a portable (handheld), battery-operated, and relatively inexpensive device that non-trained personnel can use quickly to evaluate a particular branded tablet for authenticity.

Automated Microscopic Image Acquisition, Compositing and Display Software Developed for Applied Microscopy/Cytology Training and Analysis

Micro-Screen is a CDC developed software program designed to capture images and archive and display a compiled image(s) from a portion of a microscope slide in real time. This program allows for the re-creation of larger images that are constructed from individual microscopic fields captured in up to five focal planes and two magnifications. This program may be especially useful for the creation of data archives for diagnostic and teaching purposes and for tracking histological changes during disease progression.

Novel Primate T-cell Lymphotropic Viruses (HTLV, STLV) for Development of Diagnostics, Therapeutics, Research Tools, and Vaccines

CDC researchers have isolated and characterized the novel primate T-lymphotropic viruses denoted human T-lymphotropic viruses 3 and 4 (HTLV-3 and HTLV4), that are believed to have resulted from cross-species transmission at some point in the past. It has been previously established that HTLV-1 causes adult T cell leukemia and other inflammatory diseases; HTLV-2 is considered less pathogenic than HTLV-1 and has been associated with a neurologic disease similar to HTLV-1-associated myelopathy.