Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Extracellular Vesicles (EVs), including exosomes and microvesicles, are nanometer-sized membranous vesicles that can carry different types of cargos, such as proteins, nucleic acids and metabolites. EVs are produced and released by most cell types. They act as biological mediators for intercellular communication via delivery of their cargos. This unique ability spurred translational research interest for targeted delivery of therapeutic molecules to treat a wide range of diseases. EVs also contain interesting information of their specific cellular origin.

ApoA-1 Mimetic Peptides Promoting Lipid Efflux from Cells for Treatment of Vascular Disorders

This invention involves ApoA-1 mimetic peptides with multiple amphipathic alpha-helical domains that promote lipid efflux from cells and are useful in the treatment and prevention of dyslipidemic, inflammatory and vascular disorders. IND-enabling studies for one of the peptides, named Fx-5A, are completed in preparation for an IND filing at the FDA, to be followed by a Phase I clinical trial planned for 2017.

Therapeutic Peptide Treatment for Dyslipidemic and Vascular Disorders

This invention is directed to use of certain peptide analogs comprising multiple amphipathic helical domains that are able to promote cellular lipid efflux and stimulate lipoprotein lipase activity. As a result, administration of invention peptides lead to reduced incidences of hypertriglyceridemia without inducing toxicity. Existing peptides that stimulate efflux of lipids from cells exhibit unacceptably high toxicity. Invention peptides are superior to existing peptides and can also be used to treat or prevent a vast range of vascular diseases, and their dyslipidemic precursors.

Device for Selective Partitioning of Frozen Cellular Products

Cryopreservation using liquid nitrogen frozen polyvinyl bags allows for storing cellular materials for extended periods while maintaining their activity and viability. Such bags are commonly used in the clinic to store blood products including blood cells, plasma, hematopoietic stem cells, umbilical cord blood for future uses including transplantation. These materials, typically obtained in limited quantities, may be of great therapeutic value, as is the case of stem cells or cord blood derived cells which can be used to potentially treat a number of diseases.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Intranasal Nebulizer with Disposable Drug Cartridge for Improved Delivery of Vaccines and Therapeutics

Intranasal delivery is a simple, inexpensive and needle-free route for administration of vaccines and therapeutics. This intranasal delivery technology, developed with Creare LLC., includes low-cost, disposable drug cartridges (DDCs) that mate with a durable hand-held device. The rechargeable-battery-powered device transmits ultrasonic energy to the DDC to aerosolize the drug and is capable of performing for eight hours at 120 vaccinations per hour. Potential applications for this platform technology include intranasal vaccination (e.g.

Species-specific Nucleic Acid Detection Assay for Fungi

This invention pertains to nucleic acid-based assays for the detection of Aspergillus and other filamentous fungi. Assays cover the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria or Sporthrix in a subject. This can reduce identification time from several days by conventional culture methods to a matter of hours.

Nucleic Acid Detection of the Fungal Pathogen Histoplasma capsulatum from Clinical and Environmental Samples

This invention relates to detecting Histoplasma capsulatum by PCR using oligonucleotide probes specific for the fungus. Histoplasmosis is a mycotic infection of varying severity, usually localized in the lungs. Caused by H. capsulatum, infections are usually symptomatic but can develop into chronic disease, especially in immunocompromised individuals.

Nucleic Acid-based Differentiation and Identification of Medically Important Fungi

This invention, entailsnucleic acid-based assays, for detecting the presence of pathogenic fungi such as Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Pneumocystis brasiliensis, and/or Penicillium marneffei within a sample. Within a healthcare setting, this particular approach can greatly reduce pathogen identification time, better direct treatments and ultimately improve patient outcomes.