Design of Switch-Mode Amplifier to Transform Single Transmit Hardware for Multi-Nuclear MRI

This technology includes the design and implementation for 1H-nuclear magnetic resonance imaging (MRI) that allows single transmit hardware to be "transformed" for another nucleus excitation to perform multi-nuclear MR. A radiofrequency (RF) optically controlled switch-mode amplifier prototype is tuned for excitation of two nuclei. The amplifier received the nuclei carrier signals optically through a single fiber.

Nanobody Therapeutics for SARS-CoV2

This technology includes the design and use of several nanobodies that bind to the SARS-CoV2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) receptor. Nanobodies are 12-15 kDa single-domain antibody fragments that are more stable and easier to produce in large quantities compared to conventional antibodies. SARS-CoV2 is the virus responsible for the COVID19 pandemic. The SARS-CoV2 spike protein is responsible for viral entry into human cells via interaction with ACE2 on the cell surface.

Targeting the 5’UTR of Survival Motor Neuron 2 (SMN2) with Antisense Oligonucleotides to Increase Expression for the Treatment of Spinal Muscular Atrophy

This technology includes the identification and use of antisense oligonuclecotides (ASOs) complimentary to the 5’UTR of SMN2 (Survival of motor neuron 2) for the treatment of spinal muscular atrophy (SMA). SMA is an autosomal-recessive motor neuron disease caused by the loss of both copies of the SMN1 gene. Copies of the similar gene SMN2 decrease the severity of this disease in a dose-dependent manner. Thus, increasing expression levels of the SMN2 transcript can be used to treat SMA.

Synthesis and Use of Positive Allosteric Modulators to Modify D1 Dopamine Receptor Activity

This technology relates to the creation and use of newly identified ligands to the D1 dopamine receptor (D1R). The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. These ligands are positive allosteric modulators (PAMs) that bind to the dopamine receptor at a site other than where dopamine binds and causes the receptor to have an increased response.

Identification of a novel and selective D3 dopamine receptor-selective agonist

This technology relates to the description and therapeutic use of a small molecule that selectively binds to and activates the D3 dopamine receptor. Dopamine receptors (DARs) are members of the G protein-coupled receptor (GPCR) superfamily that play a critical role in cell signaling processes, especially modulating the transfer of information within the nervous system. Members of the DAR subfamilies share high sequence homology, especially the D2 and D3 DARs. Most currently available dopaminergic drugs cross-react with both subtypes to varying degrees.