Generation of mutant mouse alleles that functionally disrupt production of BDNF from its ndividual promoters

This technology relates to a mouse model that improves an existing method of disrupting the production of the BDNF protein in specific parts of the brain. A current avenue of research seeks to examine how gene expression may effect long-lasting changes in the nervous system. Previous work has resulted in a mouse line in which the production of BDNF was disrupted. However, these mice had an inadvertent genetic component left in: a neomycin cassette. This unintentional addition led to significant deleterious effects.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Stopping Neurogenesis in Transgenic Mice and Rat Models that Express the HSV-thymidine kinase Gene in Neuronal Precursor Cells

This invention relates to novel mouse and rat models that permit the temporal death of neuronal precursor cells at any time point. Other existing methods of decreasing neurogenesis are relatively non-specific (e.g., injecting glucocorticoids) or require expensive equipment (e.g., focal x-irradiation)
These mice and rats are being used to inhibit adult neurogenesis in order to study the normal function of adult neurogenesis and to model disease states thought to feature decreased neurogenesis, such as chronic stress, anxiety, and depression.

Diagnosis and Treatment of Pediatric Acute Neurologic Syndrome with Antineuronal Antibodies

The invention is a panel of five tests of patient sera for immune responses that may attack the brain and lead to the characteristic symptoms of pediatric acute neurologic syndrome (PANS). PANS is a condition defined by a sudden onset of obsessive-compulsive symptoms, eating restrictions, and other cognitive and/or behavioral symptoms. Currently, the diagnosis of PANS is made when other possible symptoms are ruled out, a diagnosis of exclusion.

Stable, High-Yield Production of DT390-EGF Fusion Protein for Treatment of EGF-Receptor-Positive Cancers

This invention relates to the stable and high-yield production of a high-potency toxin protein called DT390-EGF. This toxin was developed for the treatment of EGF-receptor-positive cancers, including bladder cancer. Initial methods for synthesizing DT390-EGF relied on the use of E. coli. However, the production in E. coli was difficult to prepare and had limited stability. Repeated efforts to standardize the process in E. coli gave poor yields, purity, and high variation.

Detecting Levels of Chymotrypsin and Amylase using Rabbit Polyclonal Antibodies Generated from Purified Human Enzymes

The invention relates to rabbit antisera raised against purified human chymotrypsin and amylase. Both chymotrypsin and amylase are produced by the pancreas and play important roles in digestion. Abnormal levels of chymotrypsin and amylase have been known to occur with multiple pancreas-related disorders, including pancreatitis. Measuring levels of these two enzymes using these polyclonal antibodies can help determine if a pancreas is functioning correctly.

Novel NMDA ligands that are specific and selective to the NR2B subunits based on the derivatives of 7-methoxy-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol

This invention includes the design and synthesis of ligands that bind selectively and specifically to the NR2B subunit of the NMDA receptor. The NMDA receptor is thought to play a role in the pathophysiology of psychiatric disorders, including depression, stroke, drug addiction, and neuropathic pain. Existing ligands to the NMDA receptor are widely used to treat these conditions.

NIMH DAO Toolbox: Data acquisition software that enables real-time sample analysis

This technology relates to a software package called NIMH DAO Toolbox that uses multithreading and a unique buffer structure to shorten gaps in sample readouts. Data acquisition devices running in continuous sampling mode collect data samples at a given sampling rate. The samples are typically stored in a memory buffer and read out at a regular interval. If the sampling rate is short enough, there can be a gap between the time the first sample is acquired and the time that sample is available to the user. This gap is typically on the order of tens of milliseconds.

A Mood-Machine-Interface as an Intervention for Emotional Self-Regulation in Real-Time

This technology relates to a closed-loop controller that is being developed as a phone app for emotional self-regulation in real-time. There is a significant association between emotion dysregulation and symptoms of depression, anxiety, eating pathology, and substance abuse, affecting millions worldwide. Consisting of a closed-loop controller that adjusts reward values in real-time according to individual mood response, the Mood Machine Interface technology compensates for adaptation to stimuli over time allowing it to generate substantial mood changes in the user.

Radioligand for imaging brain PDE4 subtype D receptors with positron emission tomography

The technology relates to the first radioligands that can be used to image and quantify the enzyme phosphodiesterase subtype D (PDE4D). The PDE4D proteins have a role in carrying out signal transduction pathways in several cell types and is thought to be the key target of various antidepressants. Current work with imaging the radioligands in monkey brains using positron emission tomography (PET) has been successful, and further work with humans is needed.