Polyclonal Antibodies for the Gbeta5-associated Regulator of G Protein Signaling Protein, RGS7

Researchers at NIDDK have developed polyclonal antibodies against the Regulator of G Protein Signalling (RGS) protein, RGS7. RGS7 binds tightly to Gbeta5, a unique and highly specialized G protein that exhibits much less homology than other Gbeta isoforms (~50%). RGS7 is preferentially expressed in brain and neuroendocrine tissue. Like Gbeta5, RGS7 is expressed prominently in the cell membrane, as well as in the cytosol.

Conditionally Immortalized Human Podocyte Cell Lines

Podocytes, cells of the visceral epithelium in the kidneys, are a key component of the glomerular filtration barrier. Podocyte damage and loss contribute to the initiation of glomerular diseases. NIH investigators recently established long-term urinary cell cultures from two patients with focal segmental glomerulosclerosis and two healthy volunteers, via transformation with the thermosensitive SV40 large T antigen (U19tsA58) together with human telomerase (hTERT).

Fibroblast Growth Factor Receptor 1 (Fgfr1) Conditional Knock Out Mouse

Scientists at NIDDK have developed a fibroblast growth factor receptor 1 (Fgfr1) conditional knock out mouse. Fgfr1 is a member of the Fgfr family of transmembrane protein receptors with intrinsic tyrosine kinase activity. Fgfr1 is important in multiple biological processes, including mesoderm induction and patterning, cell growth and migration, organ formation and bone growth. Fgfr1 is highly expressed in central nervous system tissues and plays a critical role in proliferation, migration, and survival of neurons and glial cells.

New Cholera Vaccine and Method for Conjugating Bacterial Polysaccharides to Proteins

A new conjugate vaccine for cholera has been developed. The invention includes a new method to conjugate the O-specific polysaccharide-core part of the bacterial lipopolysaccharide and protein subcomponents. Conventional technology has entailed chemical treatment of both components to introduce linkers, which made them amenable for covalent linking. The new method simplifies production by utilizing squaric acid chemistry for conjugating the free amine-containing species (e.g. polysaccharides) directly to amine-containing species (e.g.

Personalized Body Weight Management System Using Monitoring Devices and Mathematical Models of Metabolism

Attempts to manage body weight are often unsuccessful or only temporary. This is, in part, due to antiquated dieting methods that attempt to address calorie consumption while ignoring metabolic and physical changes. Personalized and more comprehensive methods to track and manage body weight may be more effective.

M5 Muscarinic Receptor Knockout (Chrm5tm1Jwe) Mouse Model for Neurological Studies

M5 muscarinic receptor knockout: Deficiency of M5Rs reduces drug-seeking behavior.

The five Muscarinic Acetylcholine (ACh) receptors are G-protein coupled receptors (M1R-M5R). M1R, M3R and M5R selectively couple to Gq/G11; M2R and M4R selectively couple to Gi/Go. M5R knockout mice are viable and fertile, and have no major morphological abnormalities.

Gs Alpha LoxP (Gnastm1Lsw) Mouse Model for Metabolism Studies

Generation of a floxed Gnsa gene for the G-protein Gs alpha (Gsalpha) for the construction of conditional knockout mice. The heterotrimeric G protein Gsalpha couples many receptors to adenylyl cyclase and is essential for hormone-stimulated cAMP generation. Previous mouse models with germ-line mutations in Gnas, the gene that encodes Gsalpha had limited usefulness in trying to decipher the role of Gsalpha pathways in specific tissues since only heterozygotes were viable and could be analyzed.