Alpha-galactosidase-A Knockout Mouse Model for Studying Fabry Disease

This technology includes an alpha-galactosidase-A knockout mouse model that can be used to study Fabry disease, an X-linked lysosomal storage disorder. Alpha-galactosidase-A is a crucial enzyme responsible for the breakdown of glycolipids, particularly globotriaosylceramide (Gb3), within lysosomes. In Fabry disease, a rare and inherited lysosomal storage disorder, mutations in the GLA gene lead to deficient or non-functional alpha-galactosidase-A enzyme activity.

Sidechain Functionalized S-Acylbenzamides With Anti-HIV Activity

HIV infection remains a major medical problem, with approximately 38 million people worldwide living with HIV. Nipamovir and SAMT-247 are simple and inexpensive small molecules that inactivate HIV virus by interference with final maturation steps of the virus. This mechanism provides a high barrier for HIV to develop resistance. In fact, lab experiments designed to encourage HIV to develop resistance to Nipamovir and SAMT-247 have all failed. In animal tests, Nipamovir and SAMT-247 do not display toxic side effects.

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

The Transforming Growth Factor Beta (TGF-ß) ligands (i.e., TGF-ß1, -ß2, -ß3) are key regulatory proteins in animal physiology. Disruption of normal TGF-ß signaling is associated with many diseases from cancer to fibrosis. In mice and humans, TGF-ß activates TGF-ß receptors (e.g., TGFBR1), which activates SMAD proteins that alter gene expression and contribute to tumorigenesis.  Reliable animal models are essential for the study of TGF-ß signaling.