CNS Therapeutics That Target Neuronal Ceroid-Lipofuscinoses and Thioesterase Deficiency Disorders

Clinically known as Neuronal Ceroid-Lipofuscinoses (NCL), Batten disease, is a rare neuron killing disease and one of the lysosomal storage disorders (LSDs).  It is associated with a mutation or lack of palmitoyl-protein thioesterase-1 (PPT1) gene. It manifests very early in a child's life causing absence of brain activity as early as 4 years of age.

Device for Simulating Explosive Blast and Imaging Biological Specimens

Traumatic brain injury (TBI) is a major health problem.  Between 3.2 and 5.3 million people live with long-term disabilities resulting from TBI, and thus, contribute to the need to develop therapies that treat TBI-induced cellular damage. Researchers at the National Institute of Child Health and Human Development (NICHD) have developed a device that simulates the pressure waves resulting from explosions.

Treatment of GPR101-Related, Growth Hormone-Related Disorders Such as Gigantism, Dwarfism or Acromegaly

Microduplications of the GPR101 gene (located on chromosome Xq26.3 and encodes a G-protein coupled receptor) can result in an excess of growth hormone causing gigantism, that has an onset in early childhood. It is also associated with the growth of sporadic growth hormone producing adenomas in some patients with acromegaly.

Tempol as a Therapeutic to Treat Covid-19 Via Inhibition of Viral Replication

Despite several partially effective prophylactic vaccines for SARS-CoV-2 exist, patients worldwide still succumb to COVID-19. New therapeutics to treat this disease are still needed.  Upon host invasion, a critical step in the pathogenesis of COVID-19 is intracellular replication of SARS-CoV-2 before viral particles invade nearby healthy cells. This triggers an extreme inflammatory response that may lead to acute respiratory distress syndrome (ARDS) or transmission to another host.

Autophagy Modulators For Use in Treating Cancer

Cancer cells can upregulate autophagy – cell destruction – as a response to chemotherapy. Investigators in Dr. Melvin DePamphilis’ laboratory at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) have shown that compounds identified by screening a library of compounds blocks autophagy in some cancer cells (e.g., melanoma) but are not toxic to normal cells. Cancer cells with mutations in the BRAF oncogene are especially dependent on autophagy. Treatment of cancer cells with the BRAF mutation can increase the efficacy of chemotherapy.

Composite Gels and Methods of their Use in Tissue Repair, Drug Delivery, and as Implants

Gel materials, particularly hydrogels, typically lose their mechanical strength and stiffness as they swell. This property  limits their use in both biological (e.g., cartilage and ECM repair) and non-biological (e.g., sealant) applications. Innovative materials in both medical and non-medical application areas are sorely needed.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Neurites of the central nervous system can be conceptualized as cylindrical pores with finite lengths and radii. In response to physical trauma, axons may assume a “beaded” morphology which alters their ability to conduct electrical impulses, impairing brain function. These microstructural changes are thought to underlie some of the cognitive defects observed in patients with traumatic brain injury (TBI). Current methods for characterizing traumatic brain injury (TBI) cannot provide microstructural detail on the 3-dimensional shape of axonal segments.

T cell tuning molecules that modify the immune response to cancer cells

Researchers at NIH/NICHD have identified approximately 200 proteins as candidate molecules (leads) that “fine tune” T cell receptor (TCR) signaling. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) seeks partners to collaborate on in vitro studies to validate these potential immunomodulators and to conduct in vivo studies in a murine cancer model to determine the effects of ligands (e.g. antibodies) to the proteins to determine their effect on the immune response to cancer cells.