Engineered Cell-Penetrating Monoclonal Antibody for Universal Influenza Immunotherapy

Influenza remains a burden on public health, as current treatments of viral infections remain ineffective due to frequent virus mutations. Many current influenza treatments rely on targeting surface viral glycoproteins. Unfortunately, these glycoproteins are primary targets of the immune system, which results in increased selection pressure and mutational rate, leading to the well-known seasonal variation of influenza virus.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).

Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Enhanced Immune Response With Stabilized Norovirus VLPs: A Next-Generation Vaccine Approach

This technology includes a novel advancement in developing vaccines targeting norovirus, tailored specifically for a more robust and effective response. It centers around an improved version of Virus-Like Particles (VLPs) uniquely engineered for greater stability and efficacy. These enhanced VLPs are designed to remain intact even when faced with the body's immune responses, overcoming a key limitation of previous vaccine designs.

Hybridoma Cell Lines 2A4 And 5B12 Against Puromycin

Protein translation is a central cellular function attracting increasing attention from cell biologists as they integrate gene product specific information into a systems view of cellular function. Scientists at NIAID developed the puromycin-specific antibodies that allow for the specific detection of puromycin-containing nascent polypeptides via standard immunofluorescence or flow cytometry.

Human Monoclonal Antibodies that Broadly Target Coronaviruses

An abstract for this invention was published in the Federal Register on June 10, 2022. The family of coronaviruses cause upper respiratory tract disease in humans and have caused three major disease outbreaks in recent history: the 2003 SARS outbreak, the 2012 MERS outbreak, and the current SARS-CoV-2 pandemic. There is an urgent need for strategies that broadly target coronaviruses, both to deal with new SARS-CoV-2 variants and future coronavirus outbreaks.

Recombinant IgG Monoclonal Antibody-Based Detection of Taenia Antigen In Humans And Pigs

The pork tapeworm, Taenia solium, is endemic in most of Asia, Latin America, and Sub-Saharan Africa. The risk of infection is increased in regions where pigs are raised in closed proximity to humans, with migration from endemic regions being directly proportional to the prevalence of infection in high-income countries. Human infection by T. solium occurs following oral ingestion of eggs passed in human feces from an infected carrier. The larvae can travel anywhere in the human body.

An Innovative Adapter for Expedited and Automated Thawing of viably Frozen Cells

This technology is a device and system for expediting the thawing frozen specimens (e.g., cryopreserved cells) contained in cryo-vials, offering a breakthrough solution for researchers seeking efficiency and precision in their workflows. The device is equipped with a small elongated tubular adaptor that suspends a cryo-vial of frozen cells over a centrifuge tube containing culture medium in an inverted position. With a focus on speed, efficiency and automation, the adaptor dramatically expedites the process of recovering viable cells from frozen specimens.

DeePlexing – Extending Imaging Multiplexity Using Machine Learning

Spatial proteomics and transcriptomics are fast-emerging fields with the potential to revolutionize various branches of biology. In the last five years, various multiplex immunofluorescence and immunohistochemistry imaging methods have been developed to stain 5-60 different protein markers in a given tissue. Nonetheless, most of these techniques are iterative and can image a maximum of 3-8 markers in a single cycle, resulting in processing time of several hours to days.