Development of Dengue Virus Type 3 Vaccine Candidates

The disease burden associated with dengue virus infection has increased over the past several decades in the tropical and semi-tropical regions of the world, where over 2 billion people live at risk of dengue infection. Annually, there are an estimated fifty (50) to one hundred (100) million cases of dengue fever, making development of an effective vaccine a priority. In addition, there is a need for a "travelers vaccine" to protect those visiting dengue virus endemic areas, similar in scope to other currently available "travelers vaccines", such as hepatitis A vaccine.

Targeting Poly-Gamma-Glutamic Acid to Treat Staphylococcus Epidermidis and Related Infections

Over the past decade, Staphylococcus epidermidis has become the most prevalent pathogen involved in nosocomial infections. Usually an innocuous commensal microorganism on human skin, this member of the coagulase-negative group of staphylococci can cause severe infection after penetration of the epidermal protective barriers of the human body. In the U.S. alone, S. epidermidis infections on in-dwelling medical devices, which represent the main type of infection with S. epidermidis, cost the public health system approximately $1 billion per year. Importantly, S.

Monoclonal Antibodies Against Orthopoxviruses

Concerns that variola (smallpox) virus might be used as a biological weapon have led to the recommendation of widespread vaccination with vaccinia virus. While vaccination is generally safe and effective for prevention of smallpox, it is well documented that various adverse reactions in individuals have been caused by vaccination with existing licensed vaccines. Vaccinia immune globulin (VIG) prepared from vaccinated humans has historically been used to treat adverse reactions arising from vaccinia immunization.

Monoclonal Antibodies Against Dengue and Other Viruses With Deletion in Fc Region

The four dengue virus (DENV) serotypes (DENV-1 to DENV-4) are the most important arthropod-borne flaviviruses in terms of morbidity and geographic distribution. Up to 100 million DENV infections occur every year, mostly in tropical and subtropical areas where vector mosquitoes are abundant. Infection with any of the DENV serotypes may be asymptomatic or may lead to classic dengue fever or more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), which are increasingly common in the dengue endemic areas.

Chlamydia Vaccine

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that colonizes and infects oculogenital mucosal surfaces. The organism exists as multiple serovariants that infect millions of people worldwide. Ocular infections cause trachoma, a chronic follicular conjunctivitis that results in scarring and blindness. The World Health Organization estimates that 300–500 million people are afflicted by trachoma, making it the most prevalent form of infectious preventable blindness.

Hybridoma C4H3, Monoclonal Antibody to a Specific Peptide-MHC Class II Complex

T lymphocytes play an important role in the immune system by recognizing foreign protein motifs on cells. T lymphocytes are stimulated to recognize these motifs through their interactions with peptide-MHC complexes (pMHC). Thus, studying pMHC is an important aspect of understanding how the immune system works, particularly with regard to the development of vaccines. Unfortunately, the detection of pMHC is largely dependent on indirect assays, due to the difficulty of producing antibodies for specific pMHC.

PSM Peptides as Vaccine Targets Against Methicillin-Resistant Staphylococcus aureus

Available for licensing and commercial development are compositions and methods for the treatment and inhibition of Methicillin-resistant Staphylococcus aureus (MRSA), a dangerous human pathogen. The invention concerns immunogenic peptides that can be used to induce protective immunity against MRSA, including phenol-soluble modulin (PSM) peptides.

Respiratory Syncytial Virus (RSV) Vaccines Based on Promoter-Proximate Attenuation

Available for licensing and commercial development is a patent estate and related biological materials for producing therapeutic or prophylactic vaccines against Respiratory Syncytial Virus (RSV). The claimed vaccine strategy relates to the engineering and creation of live-attenuated RSV vaccine candidates by shifting the position of one or more viral genes relative to the viral promoter (aka promoter-proximal attenuation). The gene shifts can be constructed by insertion, deletion or rearrangement of genes or genome segments within the recombinant genome or antigenome.

Mouse Monoclonal Antibodies to MAD1, a Human Spindle Assembly Checkpoint Protein for Maintaining Chromosomal Segregation

Scientists at the National Institutes of Health have developed mouse monoclonal antibodies against the human spindle assembly checkpoint protein, MAD1. The spindle assembly checkpoint in mitotic cell division regulates the fidelity of chromosome segregation during cell division. MAD1 is an important component of this checkpoint control, which if compromised, can lead to the initiation of cancer cell growth. These monoclonal antibodies are the first available antibodies against MAD1 and can be used in laboratory research and diagnostics.

Humanized Monoclonal Antibodies that Specifically Bind Japanese Encephalitis Virus (JEV) and Their Use

Japanese encephalitis virus (JEV) is the prototype virus of the Japanese encephalitis (JE) group belonging to the Flavivirus genus of the Flaviviridae family. Other members of the group include Kunjin virus, St. Louis encephalitis virus, and West Nile encephalitis virus (WNV). JEV is widely distributed in South Asia, Southeast Asia, and the Asian Pacific Rim. In recent years, JE epidemics have spread to previously unaffected areas, such as northern Australia, Pakistan, India and Indonesia.