Therapeutics for Neurodegenerative Disorders and Cancer Using Lenalidomide Analogs

Inflammatory processes associated with the over-production of tumor necrosis-alpha (TNF-alpha), a potent activator of the immune system accompany numerous neurodegenerative diseases. TNF-alpha has been validated as a drug target with the development of the inhibitors Enbrel and Remicade (fusion antibodies) as prescription medications. Both, however, are large macromolecules that require direct injection and have limited brain access.

MRI-Based Method for Characterizing Axonal Microstructure in Traumatic Brain Injury

Neurites of the central nervous system can be conceptualized as cylindrical pores with finite lengths and radii. In response to physical trauma, axons may assume a “beaded” morphology which alters their ability to conduct electrical impulses, impairing brain function. These microstructural changes are thought to underlie some of the cognitive defects observed in patients with traumatic brain injury (TBI). Current methods for characterizing traumatic brain injury (TBI) cannot provide microstructural detail on the 3-dimensional shape of axonal segments.

Immunogenic Antigen Selective Cancer Immunotherapy

Melanoma is a particularly aggressive form of cancer primarily caused by over-exposure to sunlight.  Although melanoma can strike at any age, the malignancy disproportionately impacts persons of advanced age, as these individuals often have decades of repeated exposure to harmful levels of ultraviolet radiation.  Scientists at NIH among others have clarified the link between advanced melanoma and other malignancies and expression of SPANX-B.

Engineered Biological Pacemakers

The National Institute on Aging's (NIA) Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

A common symptom of many heart diseases is an abnormal heart rhythm or arrhythmia. While effectively improving the lives of many patients, implantable pacemakers have significant limitations such as limited power sources, risk of infections, potential for interference from other devices, and absence of autonomic rate modulation.

Thalidomide Analogs that Inhibit Inflammation and Angiogenesis

Thalidomide and its close analogs (lenalidomide and pomalidomide) are widely used to treat a variety of diseases, such as multiple myeloma and other cancers as well as the symptoms of several inflammatory disorders. However, thalidomide is known for its teratogenic adverse effects when first clinically introduced in the 1950s, and is associated with drowsiness and peripheral neuropathy. Hence, there is intense interest to synthesize, identify and develop safer analogs. 

Novel Regulatory B cells for Treatment of Cancer and Autoimmune Disease

The manner by which cancers evade the immune response is not well-understood. What is known is that the manner is an active process that regulates immune responses employing at least two types of suppressive cells, myeloid-derived suppressive cells and regulatory T cells (Tregs), a key subset of CD4+ T cells that controls peripheral tolerance to self- and allo-antigens. Tregs are considered to play a key role in the escape of cancer cells from anti-tumor effector T cells.

Novel Chemoattractant-Based Toxins To Improve Vaccine Immune Responses for Cancer and Infectious Diseases

Cancer is one of the leading causes of death in United States and it is estimated that there will be more than half a million deaths caused by cancer in 2009.  A major drawback of the current chemotherapy-based therapeutics is the cytotoxic side-effects associated with them.  Thus there is a dire need to develop new therapeutic strategies with fewer side-effects.  Immunotherapy has taken a lead among the new therapeutic approaches.  Enhancing the innate immune response of an individual has been a key approach for the treatment against different diseases such as cancer an

Methods of Synthesis of the Ketamine Analogs (2R, 6R)-kydroxynorketamine and (2S, 6S)-hydroxynorketamine for the Treatment of Pain and other Anxiety-related Disorders

This technology includes a method for synthesizing the ketamine analogs (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-hydroxynorketamine that may be useful for the treatment of pain, depression, anxiety, and related disorders. The drug ketamine was first used as an anesthetic but was found to be an effective treatment in a range of conditions, including paint, treatment-resistant bipolar depression, and other anxiety-related disorders. However, the routine use of ketamine is hindered by unwanted side effects, including the potential for abuse.

Use of the Ketamine Metabolite (R,6R)-hydroxynorketamine in Depression

This technology includes the identification and use of a ketamine metabolite, (2R,6R)-2-amino-2-(2-chlorophenyl)-6-hydroxycyclohexanone (HNK), for the treatment of depression. Ketamine is an NMDA receptor antagonist that exerts a rapid and sustained antidepressant and anti-suicidal effect. However, even low doses of ketamine has addictive and psychomimetic effects. The downstream metabolite, (2R,6R)-HNK, does not inhibit the NMDA receptor but recapitulates the antidepressant and anti-suicidal effect of ketamine.