Nipamovir: An Affordable, Oral Treatment for HIV Infection with a High Barrier to Resistance

This technology includes an oral treatment for HIV infection. Nipamovir is a low molecular weight mercaptobenzamide derivative that is simple to produce on kilogram scale and which can be used to lower or eliminate the infectivity of HIV. Extended treatment of Simian immunodeficiency virus (SIV)-infected macaques with Nipamovir lowers the viral load by 1 log unit, and eliminates the ability of remaining virus to infect other cells. Nipamovir shows similar antiviral activity in HIV-infected human cells. There are no toxic side-effects observed in animal studies with Nipamovir.

Methods for Diagnosing and Treating Mycobacterium tuberculosis (Mtb) Infection through Detection of CD153 Expression Level.

Mycobacterium tuberculosis (Mtb) infection continues to be the leading cause of death due to a single infectious agent and poses significant global health challenges. Past research has shown that CD4 T cells are essential for resistance to Mtb infection, and for decades it has been thought that IFN(?) production is the primary mechanism of CD4 T cell-mediated protection.

Novel Human Islet Amyloid Polypeptides as Alzheimer’s Disease Biomarkers and Inhibitors of Amyloid Formation

Over 34 million Americans are living with diabetes. An estimated 6.5 million Americans are living with Alzheimer’s disease (AD) and type 2 diabetes mellites (T2DM). Amyloidosis due to aggregation of amyloid-β is key pathogenic event in AD, whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islet leads to β-cell dysfunction. A hallmark feature of T2DM is the accumulation of islet amyloid polypeptide fibrils in pancreatic islets. Such accumulations form amyloid plaques and cause apoptosis of -cells of islets. 

Use of Repurposed Compounds for the Treatment of Alzheimer’s Disease

There are no effective treatments for Alzheimer’s disease (AD), a progressive brain disease that slowly destroys a person’s memory, cognitive skills and ability to carry out the simplest tasks. AD affects more than 5 million individuals in the United States and ranks as the sixth leading cause of death. The ε4 allele of the apolipoprotein-E (APOE) gene is the strongest genetic risk factor for sporadic or late-onset AD. Heterozygous carriers of the ε4 allele are at three-to-four times greater risk; homozygous carriers are at ten times greater risk.

Multidimensional MRI Signature for Specific Detection of Traumatic Brain Injury In Vivo

Traumatic brain injury (TBI) represents a major medical, social and economic concern worldwide due to significant mortality – especially among younger populations – and long-term disabilities. Various pathological brain lesions (e.g., intracerebral bleedings, necrotic-ischemic lesions, tissue avulsion) are produced by impacting mechanical forces. Among these, diffuse axonal injury (DAI) is one of the most significant brain lesions typically associated with trauma. However, DAI is not necessarily linked with TBI exposure. Therefore, the term “traumatic axonal injury (TAI)” is commonly used.

Novel Human Insulin Cα-Peptide as an Antagonist for Islet and Brain Amyloidosis

Over 32 million Americans are living with Diabetes and newly diagnosed cases of type 1 and type 2 diabetes is increasing. A defining feature of type 2 diabetes mellitus (T2DM) is the accumulation of islet amyloid polypeptide (IAPP) fibrils in pancreatic islets. Such accumulations form amyloid plaques, referred to as islet amyloidosis. Mounting evidence suggests that islet amyloidosis plays a causative role in the development and progression of ß-cell dysfunction in T2DM.

Fatty Acid Derivatives and Their Use for the Treatment and Prevention of Autoimmune, Inflammatory, and Pain Disorders

The discovery and selection of suitable compounds for the treatment and prevention of autoimmune, inflammatory, and pain disorders is a significant challenge. Researchers at National Institute of Aging (NIA) mitigated this issue. They discovered and synthesized numerous novel fatty acid derivatives (novel small molecules) that may ameliorate these conditions and provide treatment options for these disorders. In a relevant rat model, the fatty acid derivatives developed by NIA demonstrated:

MADCO-Accelerated Multidimensional Diffusion MRI

Although multidimensional diffusion/relaxation NMR experiments are widely used in materials sciences and engineering applications, preclinical and clinical MRI applications of these techniques were not feasible. Moreover, higher-field MRI scanners posed another obstacle to translation of this NMR method. Their specific absorption rate (SAR) limits the use of multi-echo or CPMG pulse trains, so that the large amounts of data required by these methods cannot be collected in vivo due to exceedingly long scan times.