Novel Epitopes of Bacillus anthracis Lethal Factor for Development of Diagnostics and Therapeutics

CDC researchers have characterized epitopes of Bacillus anthracis Lethal Factor (LF), a critical component of the B. anthracis lethal toxin. These epitopes may allow for development of therapeutics for the treatment or prevention of B. anthracis infection. They may also allow screening for B. anthracis LF in a sample and development of a peptide anthrax vaccine.

Human Rotavirus Strains and Vaccines for Neonatal Childhood Protection

This invention relates to rotavirus vaccine compositions and methods of vaccination. Rotaviral infection is the most commonly occurring gastrointestinal illness of children world, affecting both developed and developing economies. Additionally, rotavirus infections can affect livestock (especially calves and piglets), and resulting mortality/morbidity cause major economic losses for farmers and nations each year.

Novel Rift Valley Fever Virus Vaccines

This invention relates to recombinant Rift Valley fever (RVF) viruses containing deletions in one or more virulence genes. The recombinant RVF viruses, generated using a plasmid-based reverse genetics system, can be used as vaccines to prevent RVF infection in livestock and humans. The recombinant RVF viruses grow to high titers, provide protective immunity following a single injection, and allow for the differentiation between vaccinated animals and animals infected with wild-type RVF virus.

Species-specific Nucleic Acid Detection Assay for Fungi

This invention pertains to nucleic acid-based assays for the detection of Aspergillus and other filamentous fungi. Assays cover the species-specific detection and diagnosis of infection by Aspergillus, Fusarium, Mucor, Penecillium, Rhizomucor, Absidia, Cunninghamella, Pseudallescheria or Sporthrix in a subject. This can reduce identification time from several days by conventional culture methods to a matter of hours.

Nucleic Acid Detection of the Fungal Pathogen Histoplasma capsulatum from Clinical and Environmental Samples

This invention relates to detecting Histoplasma capsulatum by PCR using oligonucleotide probes specific for the fungus. Histoplasmosis is a mycotic infection of varying severity, usually localized in the lungs. Caused by H. capsulatum, infections are usually symptomatic but can develop into chronic disease, especially in immunocompromised individuals.

Nucleic Acid-based Differentiation and Identification of Medically Important Fungi

This invention, entailsnucleic acid-based assays, for detecting the presence of pathogenic fungi such as Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis, Pneumocystis brasiliensis, and/or Penicillium marneffei within a sample. Within a healthcare setting, this particular approach can greatly reduce pathogen identification time, better direct treatments and ultimately improve patient outcomes.

Nucleic Acid Assays for the Detection and Discrimination of Aspergillus Fungi Species within Biological Samples

This invention relates to assays for the detection and species-specific identification of Aspergillus fungi. Accurate clinical diagnosis of Aspergillus species has become increasingly important as certain species, such as A. terreus and A. fumigatus, are resistant to specific commonly employed antifungal compounds. Most contemporary fungal diagnostic methods are time-consuming and inaccurate.

Nucleic Acid-based Compositions and Methods for the Detection of Pathogenic Candida or Aspergillus Fungi Species

This invention pertains to the development of oligonucleotides for the rapid nucleic acid-based identification of Candida or Aspergillus fungi species in biological samples. This identification is accomplished by the targeting the internally transcribed spacer-2 (ITS2) region that are unique to various Candida species. The assay is sensitive, specific and rapid. Implementation of the technology will facilitate earlier specific diagnoses, and lead to better antifungal therapy implementation for infected patients.

Improved Protein Quantification Process and Vaccine Quality Control Production

This CDC invention is a method for identifying and quantifying a group of proteins in a complex mixture by a liquid chromatography-tandem mass spectrometry assay. The technology was developed for influenza although it can be used for a wide variety of protein quantification applications. As specifically developed, conserved peptides from the proteins of influenza (hemagglutinin, neuramidase, matrix 1 and 2, and nucleoprotein) have been synthesized and labeled to be used as internal standards for the quantification of those proteins in a complex (biological or manufactured) matrix.

Nucleic Acid-based Compositions and Methods for the Species-Specific Detection of Pathogenic Candida Fungi

This invention pertains to the development of oligonucleotides for the rapid nucleic acid-based identification of the Candida fungi species C. haemulonii, C. kefyr, C. lambica, C. lusitaniae, C. norvegensis, C. norvegica, C. rugosa, C. utilis, C. viswanathii, C. zeylanoides, C. dubliniensis, and C. pelliculosa within biological samples. This identification is accomplished by the targeting the internally transcribed spacer-2 (ITS2) region that are specific for each species.