Technology ID
TAB-2047

Vaccines Against Malarial Diseases

E-Numbers
E-052-2004-0
Lead Inventor
Narum, David
Applications
Vaccines­­­
Therapeutic Areas
Infectious Disease
Development Status
Proof of concept demonstrated.
Lead IC
NIAID
The invention offered for licensing is in the field of use of vaccines for malaria. The invention provides gene sequences encoding an erythrocyte binding protein of a malaria pathogen for the expression of the erythrocyte binding protein. The codon composition of the synthetic gene sequences approximates the mammalian codon composition. The synthetic gene sequences are useful for incorporation into DNA vaccine vectors, for the incorporation into various expression vectors for production of malaria proteins, or both. The synthetic genes may be modified to avoid post-translational modification of the encoded protein in other hosts. Administration of the synthetic gene sequences, or the encoded protein, as an immunization agent is useful for induction of immunity against malaria, treatment of malaria, or both. The approach presented in this invention, i.e. vaccine that may block the binding of the malaria parasite and subsequent erythrocyte invasion, may work independently or in combination with other vaccines which are based on different mechanisms.
Commercial Applications
Vaccine compositions against malaria in the form of DNA vaccines or as protein immunogens.

Competitive Advantages
Due to the complex nature of the malaria parasite, multiple approaches have been attempted to develop malaria vaccines. In particular, due to the diversity attributed to the different life cycle stages of the parasite, there are several sites that can be used as vaccine targets. The approach offered in the present invention, i.e. blockage of the binding to blood erythrocyte, may work independently or in combination with other vaccines based on different mechanisms to create an effective vaccine against malaria.
Licensing Contact:
Yang, David (Po-Lung)
polung.yang@nih.gov