Technology ID
TAB-1602

Neutralizing Monoclonal Antibodies to Respiratory Syncytial Virus

E-Numbers
E-001-1996-0
Lead Inventor
Crowe, James (NIAID)
Co-Inventors
Chanock (Estate), Robert (NIAID)
Murphy, Brian (NIAID)
Applications
Therapeutics
Therapeutic Areas
Infectious Disease
Development Status
The antibodies have been synthesized and preclinical studies have been performed.
Lead IC
NIAID
ICs
NIAID
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia among infants and children under 1 year of age. Illness begins most frequently with fever, runny nose, cough, and sometimes wheezing. During their first RSV infection, between 25% and 40% of infants and young children have signs or symptoms of bronchiolitis or pneumonia, and 0.5% to 2% require hospitalization. Most children recover from illness in 8 to 15 days. The majority of children hospitalized for RSV infection are under 6 months of age. RSV also causes repeated infections throughout life, usually associated with moderate-to-severe cold-like symptoms; however, severe lower respiratory tract disease may occur at any age, especially among the elderly or among those with compromised cardiac, pulmonary, or immune systems.

This invention is a human monoclonal antibody fragment (Fab) discovered utilizing phage display technology. The neutralizing monoclonal antibody was isolated and its binding site was identified. Fab F2-5 is a broadly reactive fusion (F) protein-specific recombinant Fab generated by antigen selection from a random combinatorial library displayed on the surface of filamentous phage. In an in vitro plaque-reduction test, the Fab RSVF2-5 neutralized the infectivity of a variety of field isolates representing viruses of both RSV subgroups A and B. The Fab recognized an antigenic determinant that differed from the only other human anti-F monoclonal antibody (RSV Fab 19) described thus far. A single dose of 4.0 mg of Fab RSVF2-5/kg of body weight administered by inhalation was sufficient to achieve a 2000-fold reduction in pulmonary virus titer in RSV-infected mice. The antigen-binding domain of Fab RSVF2-5 offers promise as part of a prophylactic regimen for RSV infection in humans.
Commercial Applications
Respiratory Syncytial Virus prophylaxis/therapeutic.

Licensing Contact: